光学 精密工程, 2016, 24 (9): 2200, 网络出版: 2016-11-14   

用于光学遥感器耐受卫星平台微振动环境地面测试的六自由度平台

Six DOF platform applied in ground test of optical remote sensor alleviation margin in satellite micro-vibration environment
作者单位
中国科学院 长春光学精密机械与物理研究所 机器人系统创新研究室, 吉林 长春 130033
摘要
考虑空间卫星平台微振动环境对高分辨率空间光学遥感器成像质量的制约, 提出了在地面测试光学遥感器耐受空间微振动环境裕度的六自由度激振平台的设计方案。建立了平台的运动学与动力学模型, 推导出促动器音圈电机的传递函数并建立了Simulink模型。基于设计的模型研制了六自由度平台。对振动平台样机进行了振动加速度控制精度的验证实验, 实验以典型的卫星平台微振动频率点为测试输入。实验结果表明平台振动频率为7~40 Hz时, 其加速度输出相对误差可控制在7%以内。该平台借鉴了Stewart平台的并联构型, 其结构简单、刚度大, 振源输出精确可控, 满足地面试验应用要求。
Abstract
As the micro-vibration of a satellite platform restricts the imaging quality of a high-resolution space optical remote sensor, this paper designs a six DOF(Degree of Freedom) platform for the ground test of optical remote sensor alleviation margin in satellite micro-vibration environment. The kinematics and dynamics models of the platform were constructed, and the transfer function, Simulink model of a voice coil actuators were derived. Based on the models, the platform with six DOFs was manufactured. A confirmatory experiment on the vibration acceleration control accuracy of the platform was carried out, in which the micro-vibration frequency of the typical satellite was taken as the input signal. The results show that the relative error of output acceleration has been controlled in 7% in frequencies from 7 Hz to 40 Hz. The platform takes the parallel construct of the stewart model, it has advantages in simpler structure, bigger stiffness and a controllable vibration source, and obtained results meet the requirements of the ground test applications.
参考文献

[1] 许博谦, 郭永飞, 王刚. 测量空间相机像移量的联合变换相关器的改进[J]. 光学 精密工程, 2013, 22(6): 1418-1423.

    XU B Q, GUO Y F, WANG G. Improvement of joint transform correlator for measurement of space camera image motion [J]. Opt. Precision Eng., 2013, 22(6): 1418-1423.(in Chinese)

[2] KRIST J E. High-contrast imaging with the Hubble Space Telescope: performance and lessons learned[C]. SPIE Astronomical Telescopes + Instrumentation. International Society for Optics and Photonics, 2004: 1284-1295.

[3] 杨剑锋, 徐振邦, 刘宏伟, 等. 光学有效载荷在轨隔振器的设计[J]. 光学 精密工程, 2014, 22(12): 3294-3302.

    YANG J F, XU ZH B, LIU H W, et al.. Design of vibration isolator for optical payload on orbit [J]. Opt. Precision Eng., 2014, 22(12): 3294-3302.(in Chinese)

[4] 虞自飞, 周徐斌, 申军烽, 等. 卫星飞轮隔振与吸振联合减振系统设计[J]. 光学 精密工程, 2014, 22(4): 897-903.

    YU Z F, ZHOU X B, SHEN J F, et al.. Design of joint vibration reduction system combined isolation and absorbtion for flywheel [J]. Opt. Precision Eng., 2014, 22(4): 897-903.(in Chinese)

[5] LEVINE M B, LEVINE M B. Interferometry program flight experiments: IPEX Ⅰ and Ⅱ[J].Proceedings of SPIE-The International Society for Optical Engineering, 1998: 707-718.

[6] DYNE S J C, TUNBRIDGE D E K, COLLINS P P. The vibration environment on a satellite in orbit [C].High Accuracy Platform Control in Space, IEE Colloquium on, IET, 1993: 12/1-12/6.

[7] EYERMAN C E. A systems engineering approach to disturbance minimization for spacecraft utilizing controlled structures technology [D].Massachusetts Institute of Technology, 1990.

[8] MELODY J W. Discrete-frequency and broadband reaction wheel disturbance models [J].Interoffice Memorandum, 1995: 3411-95-200csi.

[9] BIALKE B. A compilation of reaction wheel induced spacecraft disturbances [C].Proceedings of the 20th Annual AAS Guidance and Control Conference, 1997.

[10] KIM Y A. Thermal creak induced dynamics of space structures [J].Massachusetts Institute of Technology, 2010.

[11] LIGHTSEY P A, CHRISP M. Image quality for large segmented space telescopes [J].Proceedings of SPIE-The International Society for Optical Engineering, 2003, 4850.

[12] STEWART D. A platform with six degrees of freedom [J].ARCHIVE Proceedings of the Institution of Mechanical Engineers, 1965, 180: 371-386.

[13] DASGUPTA B, MRUTHYUNJAYA T S. The Stewart platform manipulator: a review [J].Mechanism & Machine Theory, 2000, 35(1): 15-40.

[14] ROGERS M J B, VOGT G L, WARGO M J. Microgravity: a teachers guide with activities in science, mathematics, and technology [J].Ultrasound in Medicine & Biology, 1997, 1(1): 151-168.

[15] 张景旭, 安其昌, 李剑锋, 等. 基于机构条件数的30 m望远镜三镜Stewart平台[J]. 光学 精密工程, 2014, 22(4): 890-896.

    ZHANG J X, AN Q CH, LI J F, et al.. Third mirror Stewart platform of TMT based on mechanism condition number [J]. Opt. Precision Eng., 2014, 22(4): 890-896.(in Chinese)

[16] ABDELLATIF H, HEIMANN B. Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism [J].Mechanism & Machine Theory., 2009, 44(1): 192-207.

[17] WANG J, WU J, WANG L, et al.. Simplified strategy of the dynamic model of a 6-UPS parallel kinematic machine for real-time control [J].Mechanism & Machine Theory., 2007, 42(42): 1119-1140.

[18] SOKOLOV A, XIROUCHAKIS P. Dynamics analysis of a 3-DOF parallel manipulator with R-P-S joint structure [J].Mechanism & Machine Theory., 2007, 42(5): 541-557.

[19] DASGUPTA B, MRUTHYUNJAYA T S. A newton-euler formulation for the inverse dynamics of the stewart platform manipulator [J].Mechanism & Machine Theory., 1998, 33(8): 1135-1152.

[20] OFTADEH R, AREF M M, TAGHIRAD H D. Explicit dynamics formulation of stewart-gough platform: a newton-euler approach [C]. Intelligent Robots and Systems(IROS), 2010 IEEE/RSJ International Conference on IEEE, 2010: 2772-2777.

顾营迎, 霍琦, 李昂, 李大为, 徐振邦, 李义, 吴清文. 用于光学遥感器耐受卫星平台微振动环境地面测试的六自由度平台[J]. 光学 精密工程, 2016, 24(9): 2200. GU Ying-ying, HUO Qi, LI Ang, LI Da-wei, XU Zhen-bang, LI Yi, WU Qing-wen. Six DOF platform applied in ground test of optical remote sensor alleviation margin in satellite micro-vibration environment[J]. Optics and Precision Engineering, 2016, 24(9): 2200.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!