激光与光电子学进展, 2016, 53 (4): 040001, 网络出版: 2016-03-25   

生物激光打印技术及其应用

Biological Laser Printing Technology and Its Applications
作者单位
1 长沙理工大学化学与生物工程学院, 湖南 长沙 410000
2 国防科学技术大学光电科学与工程学院, 湖南 长沙 410073
3 国防科学技术大学理学院, 湖南 长沙 410073
摘要
生物激光打印(BioLP)能够将含生物材料的极微量溶液精确打印在不同的位置而不致生物活性受损,是一种新型的生物打印技术。介绍了生物激光打印技术的原理、设备及其关键处理技术,以及该技术近年来的研究进展,并对其未来发展和挑战进行了展望。
Abstract
Biological laser printing (BioLP) is a new cell printing technology, which can precisely print a trace amount of biomaterial droplets at different locations without bioactive damage. An overview of the biological laser printing is provided, including theory, equipment, key treatment techniques and latest progress. Finally, the challenges and future development of BioLP is forecasted.
参考文献

[1] 杨强, 曹良才, 金国藩. 可抑制生物组织散射效应的光学聚焦技术研究进展[J]. 中国激光, 2015, 42(9): 0901001.

    Yang Qiang, Cao Liangcai, Jin Guofan. Progress in optical focusing techniques aiming to suppress scattering effect in biomedical tissues[J]. Chinese J Lasers, 2015, 42(9): 0901001.

[2] Skaradal A, Atala A. Biomaterials for integration with 3-D bioprinting[J]. Annals of Biomedical Engineering, 2015, 43(3): 730-746.

[3] Bohandy J, Kim B F, Adrian F J. Metal deposition from a supported metal film using an excimer laser[J]. Journal of Applied Physics, 1986, 60(4): 1538-1539.

[4] Fogarassy E, Fuchs C, Kerherve F, et al.. Laser- induced forward transfer of high- TcYBaCuO and BiSrCaCuO superconducting thin films[J]. Journal of Applied Physics, 1989, 66(1): 457-459.

[5] Piqué A, Chrisey D B, Auyeung R C Y, et al.. A novel laser transfer process for direct writing of electronic and sensor materials [J]. Applied Physics A, 1999, 69(s1): S279-S284.

[6] Ringeisen B R, Chrisey D B, Piqué A, et al.. Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer[J]. Biomaterials, 2002, 23(1): 161-166.

[7] Ringeisen B R, Kim H, Barron J A, et al.. Laser printing of pluripotent embryonal carcinoma cells[J]. Tissue Engineering Part A, 2004, 10(3-4): 483-491.

[8] Barron J A, Wu P, Ladouceur H D, et al.. Biological laser printing: A novel technique for creating heterogeneous 3- dimensional cell patterns[J]. Biomedical Microdevices, 2004, 6(2): 139-147.

[9] Serra P, Duocastella M, Fernández- Pradas J M, et al.. Laser- induced forward transfer: A laser- based technique for biomolecules printing[M]. //Ringeisen B R, Spargo B J, Wu P K. Cell and organ printing. Netherlands: Springer, 2010: 53-74.

[10] 王晓娜, 徐夕, 曹超杰, 等. 激光辐照生物细胞时热累积的研究[J]. 光学学报, 2015, 35(s1): s117001.

    Wang Xiaona, Xu Xi, Cao Chaojie, et al.. Research of heat accumulation of laser irradiated biological cells[J]. Acta Optica Sinica, 2015, 35(s1): s117001.

[11] Chen C Y, Barron J A, Ringeisen B R. Cell patterning without chemical surface modification: Cell-cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel[J]. Applied Surface Science, 2006, 252(24): 8641-8645.

[12] 王玲, 涂沛, 石然, 等. 光学相干层析成像技术用于三维生物打印水凝胶支架结构的定量评价研究[J]. 中国激光, 2015, 42(8): 0804003.

    Wang Ling, Tu Pei, Shi Ran, et al.. Quantitative evaluation of three-dimensional bio-printed hydrogel scaffolds by optical coherence tomography[J]. Chinese J Lasers, 2015, 42(8): 0804003.

[13] Guillemot F, Guillotin B, Catros S, et al.. High-throughput biological laser printing: Droplet ejection mechanism, integration of a dedicated workstation, and bioprinting of cells and biomaterials[M]. //Ringeisen B R, Spargo B J, Wu P K. Cell and organ printing. Netherlands: Springer, 2010: 95-113.

[14] 李旭伟, 陈传国, 张先增, 等. 聚焦辐照条件对脉冲CO2激光诱导液体气穴通道效应的影响[J]. 光学学报, 2015, 35(2): 0217001.

    Li Xuwei, Chen Chuanguo, Zhang Xianzeng, et al.. Influence of different defocus conditions on vapor channel induced by pulsed CO2 laser[J]. Acta Optica Sinica, 2015, 35(2): 0217001.

[15] Mézel C, Souquet A, Hallo L, et al.. Bioprinting by laser-induced forward transfer for tissue engineering applications: Jet formation modeling[J]. Biofabrication, 2010, 2(1): 65-117.

[16] Patrascioiu A, Fernández-Pradas J M, Morenza J L, et al.. Film-free laser printing: Jetting dynamics analyzed through timeresolved imaging[J]. Applied Surface Science, 2014, 302(5): 303-308.

[17] Ringeisen B R, Othon C M, Wu X, et al.. Biological laser printing (BioLP) for high resolution cell deposition[M]. //Ringeisen B R, Spargo B J, Wu P K. Cell and organ printing. Netherlands: Springer, 2010: 81-93.

[18] Barron J A, Krizman D B, Ringeisen B R. Laser printing of single cells: Statistical analysis, cell viability, and stress[J]. Annals of Biomedical Engineering, 2005, 33(2): 121-130.

[19] Koch L, Kuhn S H, Gruene M, et al.. Laser printing of skin cells and human stem cells[J]. Tissue Engineering Part C, 2009, 16(5): 847-854.

[20] Barron J A, Young H D, Dlott D D, et al.. Printing of protein microarrays via a capillary-free fluid jetting mechanism[J]. Proteomics, 2005, 5(16): 4138-4144.

[21] Ringeisen B R, Wu P K, Kim H, et al.. Picoliter-scale protein microarrays by laser direct write[J]. Biotechnology Progress, 2002, 18(5): 1126-1129.

[22] Coliina M, Serra P, Fernandez-Pradas J M, et al.. DNA deposition through laser induced forward transfer[J]. Biosensors & Bioelectronics, 2005, 20(8): 1638-1642.

[23] Fernandezpradas J. Laser-induced forward transfer of biomolecules[J]. Thin Solid Films, 2004, 453(2): 27-30.

[24] Serra P, Colina M, Fernández-Pradas J M, et al.. Preparation of functional DNA microarrays through laser-induced forward transfer[J]. Applied Physics Letters, 2004, 85(9): 1639-1641.

[25] 王佳伟, 冯莹, 魏立安. 基于双入射角度的反射率差分型生物传感器[J]. 光学学报, 2014, 34(s2): s217002.

    Wang Jiawei, Feng Ying, Wei Li′an. Reflectivity difference biosensor based on dual incident angles[J]. Acta Optica Sinica, 2014, 34(s2): s217002.

[26] Ahmad H, Sutherland A, Shin Y S, et al.. A robotics platform for automated batch fabrication of high density, microfluidicsbased DNA microarrays, with applications to single cell, multiplex assays of secreted proteins[J]. Review of Scientific Instruments, 2011, 82(9): 094301.

[27] Nagpal J K, Das B R. Oral cancer: reviewing the present understanding of its molecular mechanism and exploring the future directions for its effective management[J]. Oral Oncology, 2003, 39(3): 213-221.

[28] Shalon D, Smith S J, Brown P O. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization[J]. Genome Research, 1996, 6(7): 639-645.

[29] Wilson D S, Steffen N. Recent developments in protein microarray technology[J]. Angewandte Chemie International Edition, 2003, 42(5): 494-500.

[30] Schena M, Heller R A, Theriault T P, et al.. Microarrays: Biotechnology's discovery platform for functional genomics[J]. Trends in Biotechnology, 1998, 16(7): 301-306.

[31] Hughes T R, Mao M, Jones A R, et al.. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer[J]. Nature Biotechnology, 2001, 19(4): 342-347.

[32] Rickman D S, Herbert C J, Aggerbeck L P. Optimizing spotting solutions for increased reproducibility of cDNA microarrays [J]. Nucleic Acids Research, 2008, 31(18): e109.

[33] Park J, Moon J, Shin H, et al.. Direct-write fabrication of colloidal photonic crystal microarrays by ink-jet printing[J]. Journal of Colloid & Interface Science, 2006, 298(2): 713-719.

[34] Duocastella M, Colina M, Fernández-Pradas J M, et al.. Study of the laser-induced forward transfer of liquids for laser bioprinting[J]. Applied Surface Science, 2007, 253(19): 7855-7859.

[35] Duocastella M, Fernández-Pradas J M, Domínguez J, et al.. Printing biological solutions through laser-induced forward transfer[J]. Applied Physics A, 2008, 93(4): 941-945.

[36] Guillotin B, Souquet A, Catros S, et al.. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization[J]. Biomaterials, 2010, 31(28): 7250-7256.

[37] 吴洁, 何俊蓉, 屈会娟, 等. 马铃薯单细胞60Co-γ辐射诱变的初步研究[J]. 中国农学通报, 2012, 28(27): 57-61.

    Wu Jie, He Junrong, Qu Huijuan, et al.. Preliminary study on mutation of single-cells in potato by 60Co-γ irradiation[J]. Chinese Agricultural Science Bulletin, 2012, 28(27): 57-61.

[38] Ono J K, McCaman R E. Identification of additional histaminergic neurons in Aplysia: Improvement of single cell isolation techniques for in tandem physiological and chemical studies[J]. Neuroscience, 1980, 5(5): 835-840.

[39] Marcus J S, Anderson W F, Quake S R. Microfluidic single-cell mRNA isolation and analysis[J]. Analytical Chemistry, 2006, 78(9): 3084-3089.

[40] Fitzgerald L A, Wu P K, Gurnon J R, et al.. Isolation of the phycodnavirus PBCV-1 by biological laser printing[J]. Journal of Virological Methods, 2010, 167(2): 223-225.

[41] Ringeisen B R, Rincon K, Fitzgerald L A, et al.. Printing soil: A single-step, high-throughput method to isolate microorganisms and near- neighbour microbial consortia from a complex environmental sample[J]. Methods in Ecology & Evolution, 2015, 6(2): 209-217.

[42] Thomas B, Valadimir M, Anna G, et al.. Cell and organ printing 2: Fusion of cell aggregates in three-dimensional gels[J]. Anatomical Record Part A, 2003, 272(2): 497-502.

[43] Pirlo R K, Wu P, Liu J, et al.. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP[J]. Biotechnology & Bioengineering, 2011, 109(1): 262-273.

[44] Yan J, Huang Y, Chrisey D B. Laser-assisted printing of alginate long tubes and annular constructs[J]. Biofabrication, 2013, 5(1): 015002.

陈燕平, 杨如松, 柳珑, 魏立安, 冯莹, 向洋. 生物激光打印技术及其应用[J]. 激光与光电子学进展, 2016, 53(4): 040001. Chen Yanping, Yang Rusong, Liu Long, Wei Li′an, Feng Ying, Xiang Yang. Biological Laser Printing Technology and Its Applications[J]. Laser & Optoelectronics Progress, 2016, 53(4): 040001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!