光学 精密工程, 2019, 27 (2): 352, 网络出版: 2019-04-02   

自由飞行机器人气浮式模拟器设计

Design of air-bearing simulator for free-flying robot
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
为了搭建在轨组装的地面模拟实验系统, 设计了一种基于冷气推进、能够自由漂浮的三自由度自由飞行机器人模拟器, 并对模拟器的结构设计、气路系统、动力学建模和控制系统进行了研究。采用模块化设计对主体结构进行不同功能的分区, 并结合工作原理对模拟器的承载能力进行了分析和实验验证。然后, 采用部分解耦的方式对喷嘴进行了布置, 进一步设计了整个气路系统, 并对影响喷嘴推力的因素进行了理论分析和实验验证。最后, 采用牛顿-欧拉法建立了模拟器的动力学方程, 联合Simulink和Adams, 搭建了控制仿真模型并进行了运动仿真。实验结果显示, 模拟器能够承载800 kg以上的重量, 单方向上能够达到8 N的力, 整体运行时间能够达到30 min。模拟器对参考输入有很好的跟踪效果, 能够为超冗余模块化机械臂的地面实验提供可移动载体。
Abstract
To build a ground simulation experiment system for an in-orbit assembly, based on cold gas propulsion, we design a three-degrees-of-freedom free-flying robot simulator, and analyze the structural design, gas path system, dynamic modeling, and control system of the simulator. First, we adopt a modular design to partition the main structure of the simulator for different functions. Second, according to the working principle, we analyze and verify the bearing capacity of the simulator through an experiment. Subsequently, we arrange the nozzle in a partially decoupled way with the entire air path system, which is further designed. Then, we analyze the factors that influence the thrust size of the nozzle theoretically and verify them experimentally. Finally, we use the Newton-Euler method to establish the dynamic equation of the simulator. Simultaneously, combined with Simulink and Adams, we build a control simulation model and perform a motion simulation. The experimental results show that the simulator can carry a weight of more than 800 kg, with a force of 8 N on a single side and an overall running time of 30 min. Through simulation, we observe that the simulator has a good tracking effect on the reference input. The designed simulator can provide a mobile carrier for ground experiments of a super-redundant modular manipulator.
参考文献

[1] JEWISON C M. Reconfigurable Thruster Selection Algorithms for Aggregative Spacecraft Systems [D]. Cambridge: Massachusetts Institute of Technology, 2014.

[2] 刘书田, 胡瑞, 周平, 等. 基于筋板式基结构的大口径空间反射镜构型设计的拓扑优化方法 [J]. 光学 精密工程, 2013, 21(7): 1803-1810.

    LIU SH T, HU R, ZHOU P, et al.. Topologic optimization for configuration design of web-skin-type ground structure based large-aperture space mirror [J]. Opt. Precision Eng, 2013, 21(7): 1803-1810.(in Chinese)

[3] 金光, 张亮, 胡福生. 大F数高分辨率空间望远镜光学系统 [J].光学 精密工程, 2007, 15(2): 155-159.

    JIN G, ZHANG L, HU F SH. Investigation on space optical system of high F number and high resolution [J]. Opt. Precision Eng, 2007, 15(2): 155-159.(in Chinese)

[4] 周超. 大口径望远镜系统建模及仿真分析研究 [D]. 长春: 长春光学精密机械与物理研究所, 2011.

    ZHOU CH. Research on Modeling and Simulation Analysis for Large Telescope System [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2011.(in Chinese)

[5] GARDNER J P, MATHER J C, CLAMPIN M, et al.. The james webb space telescope [J]. Space Science Reviews, 2006, 123(4): 485-606.

[6] MILLER D, SAENZ-OTERO A, WERTZ J, et al.. SPHERES: a testbed for long duration satellite formation flying in micro-gravity conditions [C]. Proceedings of the AAS/AIAA space flight mechanics meeting. Clearwater, Florida, January, 2000: 167-179.

[7] MOHAN S, SAKAMOTO H, MILLER D W. Formation control and reconfiguration through synthetic imaging formation flying testbed (SIFFT) [C]. UV/Optical/IR Space Telescopes: Innovative Technologies and Concepts Ⅲ. International Society for Optics and Photonics, 2007: 66871E-66871E-11.

[8] MACHAIRAS K, ANDREOU S, PARASKEVAS I, et al. Extending the NTUA space robot emulator for validating complex on-orbit servicing tasks [C]. 12th Symposium on Advanced Space Technologies in Robotics and Automation (ASTRA), 2013.

[9] UNDERWOOD C, PELLEGRINO S, LAPPAS V J, et al.. Using CubeSat/micro-satellite technology to demonstrate the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST) [J]. Acta Astronautica, 2015, 114: 112-122.

[10] LIU J, GAO Q, LIU Z, et al.. Attitude control for astronautassisted robot in the space station [J]. International Journal of Control Automation & Systems, 2016, 14(4): 1082-1095.

[11] GAO Q, LIU J, TIAN T, et al.. Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode algorithm [J]. Acta Astronautica, 2017, 138: 462-474.

[12] SCHWARTZ J L, PECK M A, HALL C D. Historical eeview of air-bearing spacecraft simulators [J]. Journal of Guidance Control & Dynamics, 2003, 26(4): 513-522.

[13] 何俊培, 徐振邦, 于阳, 等.九自由度超冗余机械臂的设计和测试 [J]. 光学 精密工程, 2017, 25 (12): 80-86.

    HE J P, XU ZH B, YU Y, et al.. Design and experimental testing of a 9-DOF hyper-redundant robotic arm [J]. Opt. Precision Eng, 2017, 25(12): 80-86.(in Chinese)

[14] 朱战霞, 袁建平, 商澎, 等. 航天器操作的微重力环境构建 [M]. 北京: 中国宇航出版社, 2013: 23-154.

    ZHU ZH X. YUAN J P. SHANG P, et al.. Construction of Microgravity Environment for Spacecraft Operation [M]. Beijing: China Aerospace publishing house, 2013: 23-154.(in Chinese)

[15] 许剑. 五自由度气浮仿真试验台样机的研制及其关键技术的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010.

    XU J. Prototype Development and Research on Key Technologies of the Five Degrees-of-freedom Air Bearing Spacecrafy Simulator [D].Harbin: Harbin Institute of Technology, 2010.(in Chinese)

[16] 许剑, 任迪, 杨庆俊, 等.五自由度气浮仿真试验台气动回路设计 [J]. 液压与气动, 2009(9): 11-13.

    XU J, REN D, YANG Q J, et al.. The design of pneumatic cicuit for the 5-DOF air-bearing spacecraft simulator [J]. Chinese Hydraulics & Pneumatics, 2009(9): 11-13.(in Chinese)

[17] 刘敦, 刘育华, 陈世杰, 等. 静压气体润滑 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1990.

    LIU D, LIU Y H, CHEN SH J, et al.. Static Pressure Gas Lubrication [M]. Harbin: Harbin Institute of Technology Press, 1990.(in Chinese)

[18] SONG G, BUCK N, AGRAWAL B, et al.. Spacecraft vibration reduction using pulse-width pulse-frequency modulated input shaper [J].Journal of Guidance Control & Dynamics, 1997, 22(3): 433-440.

徐策, 李大伟, 贺帅, 夏明一, 徐振邦, 赵智远. 自由飞行机器人气浮式模拟器设计[J]. 光学 精密工程, 2019, 27(2): 352. XU Ce, LI Da-wei, HE Shuai, XIA Ming-yi, XU Zhen-bang, ZHAO Zhi-yuan. Design of air-bearing simulator for free-flying robot[J]. Optics and Precision Engineering, 2019, 27(2): 352.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!