Journal of Innovative Optical Health Sciences, 2018, 11 (4): 1850018, Published Online: Oct. 6, 2018  

Preparation of chitosan-Epigallocatechin-3-O-gallate nanoparticles and their inhibitory effect on the growth of breast cancer cells

Author Affiliations
1 Bohai Ship-building Vocational College, Huludao 125000, Liaoning, P. R. China
2 CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
3 Jilin Weather Modification O±ce, Changchun 130062, Jilin, P. R. China
4 School of Science, Changchun University of Science and Technology, Changchun 130022, Jilin, P. R. China
5 Department of Ultrasound, China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin, P. R. China
6 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, P. R. China
Abstract
In this paper, we prepared the nanoparticle drug carrier system between nanoparticles — chitosan and Epigallocatechin-3-O-gallate (EGCG) for breast cancer cell inhibiting application. For this drug carrier system, chitosan acts as a carrier and EGCG as a drug. Which were systematically characterized and thoroughly evaluated in terms of their inhibition rate and biocompatibility. We also did a cell scratch test and the result indicated that the chitosan-EGCG nanoparticles have inhibitory effect on the growth of breast cancer cells. The inhibition rate could reach up to 21.91%. This work revealed that the modification of nanoparticles paved a way for specific biomedical applications.
References

[1] O. V. Semyachkina-Glushkovskaya, A. S. Abdurashitov, E. I. Saranceva, E. G. Borisova, A. A. Shirokov, N. V. Navolokin, “Blood-brain barrier and laser technology for drug brain delivery," J. Innov. Opt. Health Sci. 5, 10 (2017).

[2] M. Ferrari, “Cancer nanotechnology: Opportunities and challenges," Nat. Rev. Cancer 5, 161–171 (2005).

[3] G. Kaul, M. Amiji, “Biodistribution and targeting potential of poly (ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model," J. Drug Target. 12, 585–591 (2004).

[4] G. Kaul, M. Amiji, “Tumor-targeted gene delivery using poly (ethylene glycol)-modified gelatin nanoparticles: In vitro and in vivo studies," Pharm Res. 22, 951–961 (2005).

[5] A. K. Cherian, A. C. Rana, S. K. Jain, “Selfassembled carbohydrate stabilized ceramic nanoparticles for the parenteral delivery of insulin," Drug DevInd Pharm. 26, 459–463 (2000).

[6] S. K. Sahoo, V. Labhasetwar, “Nanotech approaches to drug delivery and imaging," Drug Discov Today. 8, 1112–1120 (2003).

[7] V. P. Torchilin, “Targeted polymeric micelles for delivery of poorly soluble drugs," Cell. Mol. Life. Sci. 61, 2549–2559 (2004).

[8] J. E. Chung, S. Tan, S. J. Gao, N. Yongvongsoontorn, S. H. Kim, J. H. Lee, H. S. Choi, H. Yano, L. Zhuo, M. Kurisawa, J. Y. Ying, “Self-assembled micellarnanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy," Nat. Nanotechnol. 208, 907 (2014).

[9] J. Thawonsuwan, V. Kiron, S. Satoh, A. Panigrahi, V. Verlhac, “Epigallocatechin-3-gallate (EGCG) affects the antioxidant and immune defense of the rainbow trout, Oncorhynchusmykiss," Fish PhysiolBiochem. 36, 687–697 (2010).

[10] C. Chi, S. Guoxiang, V. Hebbar, “Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells," Carcinogensis 24, 1369–1378 (2003).

[11] A. Mittal, M. S. Pate, R. C. Wylie, T. O. Tollefsbol, S. K. Katiyar, “EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis," Int. J. Oncol. 24, 703–710 (2004).

[12] X.-P. Liu, X.-L. Wen, S.-N. Zou, “Induction of apoptosis by epigallocatechin-3-gallate via activating mitochondrial signaling in human gastric cancer cells," J. Nanhua Univ. 4, 499–502 (2007).

[13] Z. Fang, D. Cheng, “EGCG inhibited the proliferation of liver canner HepG2 cells through NF-κBpathway," Chin. J. Gastroenterol. Hepatol. 3, 229–231 (2012).

[14] L. Chen, M. J. Lee, H. Li, C. S. Yang, “Absorption, distribution, elimination of tea polyphenols in rats," Drug Metab. Dispos. Biol. Fate Chem. 25, 1045–1050 (1997).

[15] S. Sang, J. D. Lambert, C. S. Yang, “Bioavailability and stability issues in understanding the cancer preventive effects of tea polyphenols," J. Sci. Food Agric. 86, 2256–2265 (2006).

[16] A. Dube, K. Ng, J. A. Nicolazzo, I. Larson, “Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution," Food Chem. 122(3), 662–667 (2010).

[17] K. A. Janes, M. P. Fresneau, A. Marazuela, A. Fabra, M. J. Alonso, “Chitosan nanoparticles as delivery systems for doxorubicin," J. Control. Release. 73, 255–267 (2001).

[18] S. Mitra, U. Gaur, P. C. Ghosh, “Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier," Control. Release. 74, 317–323 (2001).

[19] C. Yang, R. Hu, T. Anderson, Y. Wang, G. Lin, W.-C. Law, W.-J. Lin, Q. T. Nguyen, H. T. Toh, H. S. Yoon, C.-K. Chen, K.-T. Yong, “Biodegradable nanoparticle-mediated K-ras down regulation for pancreatic cancer gene therapy," J. Mater. Chem. B. 3, 2163–2172 (2015).

[20] K. A. Janes, M. P. Fresneau, A. Marazuela, A. Fabra, M. J. Alonso, “Chitosan nanoparticles as delivery systems for doxorubicin," J. Control. Release. 73, 255–267 (2001).

[21] Y. Pan, Y. J. Li, H. Y. Zhao, J. M. Zheng, H. Xu, G. Wei, J. S. Hao, F. D. Cui, “Bioadhesive polysaccharide in protein delivery system: Chitosan nanoparticles improve the intestinal absorption of insulin in vivo," Int. J. Pharm. 249, 139 (2002).

[22] Q.-F. He, G.-M. Li, H.-Z. Wu, Z.-M. Lu, L. Li, “Preparation and drug releasing property of 5-fluorouracil-loaded chitosan microsphere," Chin. J. Appl. Chem. 21, 192–196 (2004).

[23] D. G. Kim, Y. I. Jeong, C. Choi, S. H. Roh, S. K. Kang, M. K. Jang, J. W. Nah, “Retinol-encapsulated low molecular water-soluble chitosan nanoparticles," Int. J. Pharmaceutics 319, 130 (2006).

[24] Y. Cho, J. T. Kim, H. J. Park, “Size-controlled selfaggregated N-acyl chitosan nanoparticles as a vitamin C carrier," Carbohydr. Polym. 88, 1087–1092 (2012).

[25] J. Liang, L. Cao, L. Zhang, X.-C. Wan, “Preparation, characterization, and in vitro antitumor activity of folate conjugated chitosan coated EGCG nanoparticles," Food Sci. Biotechnol. 23, 569–575 (2014).

[26] F. Lei, X. Wang, C. Liang, F. Yuan, Y. Gao, “Preparation and functional evaluation of chitosan-GCG conjugates," J. Appl. Polym. Sci. 131, 39732 (2014).

[27] J. Ouyang, Z. Xia, P. Lu, “Application of TEM and SAED on inorganic nano-materials," J. Jinan Univ. 33, 87–93 (2012).

Yingyi Liu, Siyi Hu, Yueshu Feng, Peng Zou, Yue Wang, Pei Qin, Jie Yue, Yaotian Liang, Hui Wang, Liwei Liu. Preparation of chitosan-Epigallocatechin-3-O-gallate nanoparticles and their inhibitory effect on the growth of breast cancer cells[J]. Journal of Innovative Optical Health Sciences, 2018, 11(4): 1850018.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!