光学学报, 2016, 36 (3): 0327001, 网络出版: 2016-03-03   

基于量子存储和纠缠光源的测量设备无关量子密钥分配网络

Measurement Device Independent Quantum Key Distribution Network Based on Quantum Memory and Entangled Photon Sources
孙颖 1,*赵尚弘 1东晨 1,2
作者单位
1 空军工程大学信息与导航学院, 陕西 西安 710077
2 西安通信学院信息安全系, 陕西 西安 710006
引用该论文

孙颖, 赵尚弘, 东晨. 基于量子存储和纠缠光源的测量设备无关量子密钥分配网络[J]. 光学学报, 2016, 36(3): 0327001.

Sun Ying, Zhao Shanghong, Dong Chen. Measurement Device Independent Quantum Key Distribution Network Based on Quantum Memory and Entangled Photon Sources[J]. Acta Optica Sinica, 2016, 36(3): 0327001.

参考文献

[1] C H Bennett, G Brassard. Quantum cryptography: public key distribution and coin tossing[C]. Theoretical Computer Science, 2014, 560 (1): 7-11.

[2] 朱峰, 王琴. 基于指示单光子源的量子密钥分配协议[J]. 光学学报, 2014, 34(6): 0627002.

    Zhu Feng, Wang Qin. Quantum key distribution protocol based on heralded single photon source[J]. Acta Optica Sinica, 2014, 34(6): 0627002.

[3] Inamori H, Lütkenhaus N, Mayers D. Unconditional security of practical quantum key distribution[J]. European Physical Journal D, 2007, 41(3): 599-627.

[4] Davide B, Matteo C, Nicola L, et al.. Experimental quantum key distribution with finite-key security analysis for noisy channels[J]. Nature Communications, 2013, 4(9): 275-289.

[5] Sun Q C, Wang W L, Liu Y, et al.. Experimental passive decoy-state quantum key distribution[J]. Laser Physics Letters, 2014, 11(8): 085202.

[6] Hiskett P A, Rosenberg D, Peterson C G, et al.. Long-distance quantum key distribution in optical fibre[J]. New J Phys, 2006, 8(17): 4529-4532.

[7] Chapuran T E, Toliver P, Peters N A, et al.. Optical networking for quantum key distribution and quantum communications[J]. New J Phys, 2009, 11(11): 105001.

[8] Fu Y, Yin H L, Chen T Y, et al.. Long-distance measurement-device-independent multiparty quantum communication[J]. Phys Rev Lett, 2015, 114(9): 090501.

[9] Chen T Y, Wang J, Liang H, et al.. Metropolitan all-pass and inter-city quantum communication network[J]. Opt Express, 2010, 18(26): 27217-27255.

[10] Townsend P D. Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems [J]. IEEE Photonics Technology Letters, 1998, 7(10): 1048-1050.

[11] Chip Elliott, Alexander Colvin, Davin Pearson, et al.. Current status of the DARPA quantum network[C]. SPIE, 2005, 5815: 138-149.

[12] Sasaki M, Fujiwara M, Ishizuka H, et al.. Field test of quantum key distribution in the tokyo QKD network[J]. Opt Express, 2011, 19(11): 10387-10409.

[13] Stucki D, Legre M, Buntschu F, et al.. Long term performance of the Swiss quantum key distribution network in a field environment[J]. New J Phys, 2011, 13(12): 123001.

[14] Wang S, Chen W, Yin Z Q, et al.. Field and long-term demonstration of a wide area quantum key distribution network[J]. Quantum Physics, 2014, 2(18): 21739-21756.

[15] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Phys Rev Lett, 2012, 108(13): 130503.

[16] Rubenok A, Slater J A, Chan P, et al.. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks[J]. Phys Rev Lett, 2013, 111(13): 130501.

[17] Liu Y, Chen T Y, Wang L J, et al.. Experimental measurement-device-independent quantum key distribution[J]. Phys Rev Lett, 2013, 111(13): 130502.

[18] Liang W Y, Li M, Yin Z Q, et al.. Simple implementation of quantum key distribution based on single-photon Bell-state measurement [J]. Phys Rev A, 2015, 92(1): 012319.

[19] Panayi C, Razavi M, Ma X, et al.. Memory-assisted measurement-device-independent quantum key distribution[J]. New J Phys, 2014, 16(4): 043005.

[20] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究[J]. 物理学报, 2015, 64(14): 140304.

    Sun Ying, Zhao Shanghong, Dong Chen. Long distance measurement device independent quantum key distribution based on quantum memories[J]. Acta Physica Sinica, 2015, 64(14): 140304.

[21] Stute A, Casabone B, Schindler P, et al.. Tunable ion-photon entanglement in an optical cavity[J]. Nature, 2012, 485(7399): 482-485.

[22] Razavi M, Shapiro J H. Long-distance quantum communication with neutral atoms[J]. Phys Rev A, 2006, 73(4): 042303.

[23] Muller M, Bounouar S, Jons K D, et al.. On demand generation of indistinguishable polarization-entangled photon pairs[J]. Nature Photonics, 2014, 8(3): 224-228.

[24] Chen Y H, Lee M J, Wang I C, et al.. Coherent optical memory with high storage efficiency and large fractional delay[J]. Phys Rev Lett, 2013, 110(8): 083601.

[25] Ma X, Razavi M. Alternative schemes for measurement-device independent quantum key distribution[J]. Phys Rev A, 2012, 86(6): 062319.

[26] Dousse A, Suffczynski J, Krebs O, et al.. A quantum dot based bright source of entangled photon pairs operating at 53 K[J]. Appl Phys Lett, 2010, 97(8): 081104.

[27] Bao X H, Reingruber A, Dietrich P, et al.. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J]. Nat Phys, 2012, 8(7): 517-521.

[28] Reim K F, Michelberger P, Lee K C, et al.. Single-photon-level quantum memory at room temperature[J]. Phys Rev Lett, 2011, 107(5): 053603.

[29] Saglamyurek E, Sinclair N, Slater J A, et al.. An integrated processor for photonic quantum states using a broadband light-matter interface [J]. New J Phys, 2014, 16(6): 065019.

孙颖, 赵尚弘, 东晨. 基于量子存储和纠缠光源的测量设备无关量子密钥分配网络[J]. 光学学报, 2016, 36(3): 0327001. Sun Ying, Zhao Shanghong, Dong Chen. Measurement Device Independent Quantum Key Distribution Network Based on Quantum Memory and Entangled Photon Sources[J]. Acta Optica Sinica, 2016, 36(3): 0327001.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!