光学学报, 2016, 36 (3): 0327001, 网络出版: 2016-03-03   

基于量子存储和纠缠光源的测量设备无关量子密钥分配网络

Measurement Device Independent Quantum Key Distribution Network Based on Quantum Memory and Entangled Photon Sources
孙颖 1,*赵尚弘 1东晨 1,2
作者单位
1 空军工程大学信息与导航学院, 陕西 西安 710077
2 西安通信学院信息安全系, 陕西 西安 710006
摘要
针对传统量子密钥分配协议安全密钥传输距离较短,难以实现长距离量子保密网的问题,提出了基于量子存储和纠缠光源(EPS)的测量设备无关量子密钥分配协议及其网络模型。比较了直接预报量子存储、非直接预报量子存储与基于EPS 的量子存储的优劣,分析了基于量子存储和EPS 的测量设备无关量子密钥分配系统中密钥生成率与安全传输距离、存储器量子态保持时间的关系。仿真结果表明,基于EPS 的量子存储方案弥补了直接预报量子存储方案需要预报存储器的不足,安全传输距离远高于非直接预报量子存储方案,且当存储器的量子态保持时间T1 大于1 ms时,量子密钥生成率基本不再随T1 增大而增大。实验中采用双信道两用户网络模型,实际中可通过时分复用器和快速光开关实现单信道多用户的量子密钥分配网络。
Abstract
The long-distance quantum key distribution network is difficult, since the secure transmission distance of traditional quantum key distribution (QKD) is not long enough. To overcome this problem, A measurement device independent (MDI) QKD protocol based on quantum memories(QM) and entangled photon sources(EPS) is proposed, as well as its network model. And indirectly heralding QM scheme and directly heralding QM with QM scheme based on EPS are compared. The relationships of the key generation rate, secure transmission distance, and hold time of quantum state about MDI-QKD protocol based on QM and EPS are also analyzed. The simulation results show that MDI-QKD based on QM and EPS compensate for the lack of MDI-QKD based on directly heralding QM, which is necessary for heralding QM, and the secure transmission distance is far higher than traditional MDIQKD and general MDI-QKD based on indirectly heralding QM. Furthermore, once the hold time of quantum state is greater than 1 ms, the key generation rate will be almost invariable. The double-channel and two-user network model are employed. The single-channel and multi-user QKD network can be implemented with time division multiplexer and fast optical switch.
参考文献

[1] C H Bennett, G Brassard. Quantum cryptography: public key distribution and coin tossing[C]. Theoretical Computer Science, 2014, 560 (1): 7-11.

[2] 朱峰, 王琴. 基于指示单光子源的量子密钥分配协议[J]. 光学学报, 2014, 34(6): 0627002.

    Zhu Feng, Wang Qin. Quantum key distribution protocol based on heralded single photon source[J]. Acta Optica Sinica, 2014, 34(6): 0627002.

[3] Inamori H, Lütkenhaus N, Mayers D. Unconditional security of practical quantum key distribution[J]. European Physical Journal D, 2007, 41(3): 599-627.

[4] Davide B, Matteo C, Nicola L, et al.. Experimental quantum key distribution with finite-key security analysis for noisy channels[J]. Nature Communications, 2013, 4(9): 275-289.

[5] Sun Q C, Wang W L, Liu Y, et al.. Experimental passive decoy-state quantum key distribution[J]. Laser Physics Letters, 2014, 11(8): 085202.

[6] Hiskett P A, Rosenberg D, Peterson C G, et al.. Long-distance quantum key distribution in optical fibre[J]. New J Phys, 2006, 8(17): 4529-4532.

[7] Chapuran T E, Toliver P, Peters N A, et al.. Optical networking for quantum key distribution and quantum communications[J]. New J Phys, 2009, 11(11): 105001.

[8] Fu Y, Yin H L, Chen T Y, et al.. Long-distance measurement-device-independent multiparty quantum communication[J]. Phys Rev Lett, 2015, 114(9): 090501.

[9] Chen T Y, Wang J, Liang H, et al.. Metropolitan all-pass and inter-city quantum communication network[J]. Opt Express, 2010, 18(26): 27217-27255.

[10] Townsend P D. Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems [J]. IEEE Photonics Technology Letters, 1998, 7(10): 1048-1050.

[11] Chip Elliott, Alexander Colvin, Davin Pearson, et al.. Current status of the DARPA quantum network[C]. SPIE, 2005, 5815: 138-149.

[12] Sasaki M, Fujiwara M, Ishizuka H, et al.. Field test of quantum key distribution in the tokyo QKD network[J]. Opt Express, 2011, 19(11): 10387-10409.

[13] Stucki D, Legre M, Buntschu F, et al.. Long term performance of the Swiss quantum key distribution network in a field environment[J]. New J Phys, 2011, 13(12): 123001.

[14] Wang S, Chen W, Yin Z Q, et al.. Field and long-term demonstration of a wide area quantum key distribution network[J]. Quantum Physics, 2014, 2(18): 21739-21756.

[15] Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution[J]. Phys Rev Lett, 2012, 108(13): 130503.

[16] Rubenok A, Slater J A, Chan P, et al.. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks[J]. Phys Rev Lett, 2013, 111(13): 130501.

[17] Liu Y, Chen T Y, Wang L J, et al.. Experimental measurement-device-independent quantum key distribution[J]. Phys Rev Lett, 2013, 111(13): 130502.

[18] Liang W Y, Li M, Yin Z Q, et al.. Simple implementation of quantum key distribution based on single-photon Bell-state measurement [J]. Phys Rev A, 2015, 92(1): 012319.

[19] Panayi C, Razavi M, Ma X, et al.. Memory-assisted measurement-device-independent quantum key distribution[J]. New J Phys, 2014, 16(4): 043005.

[20] 孙颖, 赵尚弘, 东晨. 基于量子存储的长距离测量设备无关量子密钥分配研究[J]. 物理学报, 2015, 64(14): 140304.

    Sun Ying, Zhao Shanghong, Dong Chen. Long distance measurement device independent quantum key distribution based on quantum memories[J]. Acta Physica Sinica, 2015, 64(14): 140304.

[21] Stute A, Casabone B, Schindler P, et al.. Tunable ion-photon entanglement in an optical cavity[J]. Nature, 2012, 485(7399): 482-485.

[22] Razavi M, Shapiro J H. Long-distance quantum communication with neutral atoms[J]. Phys Rev A, 2006, 73(4): 042303.

[23] Muller M, Bounouar S, Jons K D, et al.. On demand generation of indistinguishable polarization-entangled photon pairs[J]. Nature Photonics, 2014, 8(3): 224-228.

[24] Chen Y H, Lee M J, Wang I C, et al.. Coherent optical memory with high storage efficiency and large fractional delay[J]. Phys Rev Lett, 2013, 110(8): 083601.

[25] Ma X, Razavi M. Alternative schemes for measurement-device independent quantum key distribution[J]. Phys Rev A, 2012, 86(6): 062319.

[26] Dousse A, Suffczynski J, Krebs O, et al.. A quantum dot based bright source of entangled photon pairs operating at 53 K[J]. Appl Phys Lett, 2010, 97(8): 081104.

[27] Bao X H, Reingruber A, Dietrich P, et al.. Efficient and long-lived quantum memory with cold atoms inside a ring cavity[J]. Nat Phys, 2012, 8(7): 517-521.

[28] Reim K F, Michelberger P, Lee K C, et al.. Single-photon-level quantum memory at room temperature[J]. Phys Rev Lett, 2011, 107(5): 053603.

[29] Saglamyurek E, Sinclair N, Slater J A, et al.. An integrated processor for photonic quantum states using a broadband light-matter interface [J]. New J Phys, 2014, 16(6): 065019.

孙颖, 赵尚弘, 东晨. 基于量子存储和纠缠光源的测量设备无关量子密钥分配网络[J]. 光学学报, 2016, 36(3): 0327001. Sun Ying, Zhao Shanghong, Dong Chen. Measurement Device Independent Quantum Key Distribution Network Based on Quantum Memory and Entangled Photon Sources[J]. Acta Optica Sinica, 2016, 36(3): 0327001.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!