激光与光电子学进展, 2011, 48 (9): 091001, 网络出版: 2011-07-25   

基于互信息波段选择和经验模态分解的高精度高光谱数据分类

Mutual Information Bands Selection and Empirical Mode Decomposition Based Support Vector Machines for Hyperspectral Data High-Accuracy Classification
作者单位
哈尔滨工业大学控制科学与工程系, 黑龙江 哈尔滨 150001
摘要
在遥感数据处理研究中,高维高光谱数据的冗余信息和噪声严重影响高光谱数据的分类精度,针对此问题提出基于互信息波段选择和经验模态分解的高精度高光谱数据分类算法(MI-EMD-SVM)。分别采用基于互信息波段选择方法和经验模态分解实现对高光谱数据的冗余信息处理和特征提取,并获得处理后的高光谱数据X″。采用支持向量机分类算法对处理后的高光谱数据X″进行分类实验。仿真实验结果证实MI-EMD-SVM算法不仅提高高光谱数据分类精度,同时还减少支持向量数目,提高高光谱数据分类速度。
Abstract
In remote-sensing data processing research, redundant information and noise of high-dimensional hyperspectral data affect the classification accuracy of hyperspectral data seriously. To solve this problem, we propose an algorithm of hyperspectral data classification based on band selection with mutual information and empirical mode decomposition (MI-EMD-SVM). Band selection based on mutual information is used to achieve redundant information processing, and empirical mode decomposition (EMD) is used to achieve feature extraction. And the obtained hyperspectral data X″ has been processed. The support vector machines (SVM) classification of the data is classified, which has been processed. Experimental results of the AVIRIS data indicate that the proposed approach improves the classification accuracy of hyperspectral data, significantly reduces the number of support vector, and improves the speed of hyperspectral data classification.
参考文献

[1] Baofeng Guo, Steve R. Gunn, R. I. Damper et al.. Band selection for hyperspectral image classification using mutual information[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 522~526

[2] 韩玲, 董连凤, 张敏 等. 基于改进的矩匹配方法高光谱影像条带噪声滤波技术[J]. 光学学报, 2009, 29(12): 3333~3338

    Han Ling, Dong Lianfeng, Zhang Min et al.. Destriping hyperspectral image based on an improved moment matching method[J]. Acta Optica Sinica, 2009, 29(12): 3333~3338

[3] 刘小刚, 赵慧洁, 李娜. 基于多重分形谱的高光谱数据特征提取[J]. 光学学报, 2009, 29(3): 844~848

    Liu Xiaogang, Zhao Huijie, Li Na. Feature extraction based on multifractal spectrum for hyperspectral data[J]. Acta Optica Sinica, 2009, 29(3): 844~848

[4] 李山山, 张兵, 高连如 等.基于方差最小的高光谱目标探测算法研究[J]. 光学学报, 2010, 30(7): 2116~2122

    Li Shanshan, Zhang Bing, Gao Lianru et al.. Research of hyperspectral target detection algorithms based on variance minimum[J]. Acta Optica Sinica, 2010, 30(7): 2116~2122

[5] J. A. Hoeting, D. Madigan, A. E. Raftery et al.. Bayesian model averaging: a tutorial[J]. Statistical Science, 1999, 14(4): 382~417

[6] G. R. Xuan, X. M. Zhu, P. Q. Chai et al.. Feature selection based on the bhattacharyya distance[C]. Proceedings of 18th International Conference on Pattern Recognition, Hong Kong, 2006. 1232~1235

[7] R. P. W. Duin, M. Loog. Linear dimensionality reduction via a heteroscedastic extension of LDA: the Chernoff criterion[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6): 732~739

[8] A. Ifarraguerri, M. W. Prairie. Visual method for spectral band selection[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 101~106

[9] R. Battiti. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 1994, 5(4): 537~550

[10] Nojun Kwak, Chong-Ho Choi. Improved mutual information feature selector for neural networks in supervised learning[C]. Proceeding of 1999 International Joint Conference on Neural Networks, Washington, 1999, 2: 1313~1318

[11] N. E. Huang, Z. Shen, S. R. Long. The empirical mode decomposition and the hilbert spectrum for nonlinear and nonstationary time series analysis[C]. Proceeding of Royal Society, London, 1998, A454: 903~995

[12] 何光林, 彭林科. 基于FPGA的高光谱图像奇异值分解降维技术[J]. 中国激光, 2009, 36(11): 2983~2988

    He Guanglin, Peng Linke. FPGA implement of SVD for dimensionality reduction in hyperspectral images[J]. Chinese J. Lasers, 2009, 36(11): 2983~2988

[13] H. Peng, F. Long, C. Ding. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226~1238

[14] A. Jain, D. Zongker. Feature selection: valuation, application, and small sample performance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2): 153~158

[15] B. Demir, S. Erturk. Empirical mode decomposition of hyperspectral images for support vector machine classification[J]. IEEE Tansactions on Geoscience and Remote Sensing, 2010, 48(11): 4071~4084

[16] AVIRIS Northwest Indiana′s Indian Pines 1992 Dataset [OL]. Available: ftp://ftp.ecn.purdue.edu/biehl/ PC_MultiSpec/ThyFiles.zip (ground truth map) and ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/92AV3C

[17] 张淼, 沈毅, 王强. 基于非线性相关系数核方法的超光谱数据分类[J]. 光学学报, 2009, 29(9): 2607~2614

    Zhang Miao, Shen Yi, Wang Qiang. Nonlinear correlation coefficient based kernel method for hyperspectral data classification[J]. Acta Optica Sinica, 2009, 29(9): 2607~2614

沈毅, 张敏, 张淼. 基于互信息波段选择和经验模态分解的高精度高光谱数据分类[J]. 激光与光电子学进展, 2011, 48(9): 091001. Shen Yi, Zhang Min, Zhang Miao. Mutual Information Bands Selection and Empirical Mode Decomposition Based Support Vector Machines for Hyperspectral Data High-Accuracy Classification[J]. Laser & Optoelectronics Progress, 2011, 48(9): 091001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!