中国激光, 2011, 38 (6): 0603004, 网络出版: 2011-05-26   

激光焊接熔池流动性试验研究

Experimental Research on Fluidity of Laser Welded Molten Pool
作者单位
上海交通大学上海市激光制造与材料改性重点实验室, 上海 200240
摘要
采用大功率CO2激光器研究Al-ZL101/TiB2-Al三层板激光焊接,根据扫描电镜(SEM)及维氏硬度计观察并测量焊后各层TiB2分布及焊缝硬度,得出了在激光焊透及未焊透时的熔池流动状态。结果表明,在激光未穿透焊接时,熔池内存在一个对流环,其对流在小孔缩颈处最为强烈,此处硬度值最大,TiB2体积分数最高,而在熔池底部对流最弱,硬度值最低,TiB2体积分数最小;在激光全焊透焊接时,熔池在上下两个表面分别存在对流环,下表面对流比上表面对流更为强烈,其硬度值较大,TiB2体积分数较高,对流在焊缝中间层两对流环连接处最弱,此处对流流失的TiB2最少,使得TiB2体积分数最大,硬度值最高。
Abstract
The fluidity of molten pool is analyzed with CO2 laser welding on Al-ZL101/TiB2-Al triple plates. Scan electron microscope (SEM) and hardness tester are used to observe the TiB2 distribution and measure the hardness. The fluidity of molten pool is inferred according to the TiB2 distribution and hardness values of weld seam. In the incomplete penetration, a convection loop is presented and the strongest convection locates at the neck of keyhole where the highest hardness and TiB2 volume fraction are presented. In the full penetration, two convection loops are presented on the top and bottom surfaces of molten pool, respectively. The convection is stronger at the bottom than that on the top so that it has higher TiB2 volume fraction and hardness. The slightest convection occurs in the link of two loops, i.e. the center of weld seam where the highest hardness and TiB2 volume fraction are presented because of the smallest reduction of TiB2 flowing away with the convection.
参考文献

[1] 陈熙, 叶晓虎. 激光穿透焊的数值模拟研究[J]. 应用激光, 2002, 22(2): 185~188

    Chen Xi, Ye Xiaohu. A numerical simulation study of laser full-Penetration welding[J]. Applied Laser, 2002, 22(2): 185~188

[2] Chengwu Yao, Binshi Xu, Xiancheng Zhang et al.. Interface microstructure and mechanical properties of laser welding copper-steel dissimilar joint[J]. Optics and Lasers in Engineering, 2009, 47(7-8): 807~814

[3] Xiaodong Qi, Liming Liu. Fusion Welding of Fe-added lap joints between AZ31B magnesium alloy to 6061 aluminum alloy by hybrid laser-tungsten inert gas welding technique[J]. Materials and Design, 2011, doi: 10.1016/j.matdes.2011.04.046

[4] S. Katayama, M. Mizutani, A. Matsunawa. Development of porosity prevention procedures during laser welding[C]. SPIE, 2003, 4831: 281~288

[5] Hong Wang, Yaowu Shi, Shuili Gong. Effect of pressure gradient driven convection in the molten pool during the deep penetration laser welding[J]. Journal of Materials Processing Technology, 2007, 184(1-3): 386~392

[6] R. Fabbro, S. Slimani, I. Doudet et al.. Experimental study of the dynamical coupling between the induced vapour plume and the melt pool for NdYAG CW laser welding[J]. Journal of Physics, 2006, 39: 394~400

[7] 徐九华, 罗玉梅, 张靖周. 高能束流小孔焊接模式传热过程的数值模拟[J]. 中国激光, 2000, A27(2): 174~178

    Xu Jiuhua, Luo Yumei, Zhang Jingzhou. Numerical study for heat transfer in high power density keyhole welding process[J]. Chinese J. Lasers, 2000, A27(2): 174~178

[8] Won-IK Cho, Suck-Joo Na, Min-Hyun et al.. Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding[J]. Computational Materials Science, 2010, 49(4): 792~800

[9] 杜汉斌, 胡伦骥, 王东川 等. 激光穿透焊温度场及流动场的数值模拟[J]. 焊接学报, 2005, 26(12): 65~69

    Du Hanbin, Hu Lunji, Wang Dongchuan et al.. Research on the numerical simulation of thermal and velocity field in laser full-penetration welding[J]. Transactions of the China Welding Institution, 2005, 26(12): 65~69

[10] 刘会霞, 邢安, 张惠中 等. 聚氯乙烯激光透射焊接温度场的有限元模拟[J]. 中国激光, 2008, 35(11): 1801~1807

    Liu Huixia, Xing An, Zhang Huizhong et al.. Temperature field simulation on laser transmission welding of polyvinylchloride[J]. Chinese J. Lasers, 2008, 35(11): 1801~1807

[11] 段爱琴, 胡伦骥, 王亚军. 激光深熔焊焊缝的熔透性监测研究[J]. 中国激光, 2005, 32(1): 131~134

    Duan Aiqin, Hu Lunji, Wang Yajun. Research on welding penetration monitoring by laser plasma optical signal in laser welding[J]. Chinese J. Lasers, 2005, 32(1): 131~134

[12] 崔海超, 芦凤桂, 唐新华 等. 原位生成铝基复合材料的激光焊接[J]. 焊接学报, 2010, 31(8): 68~72

    Cui Haichao, Lu Fenggui, Tang Xinhua et al.. Laser welding of in-situ particulate reinforced aluminum matrix composites[J]. Transactions of the China Welding Institution, 2010, 31(8): 68~72

[13] E. H. Amara, R. Fabbro, F. Hamadi. Modeling of the melted bath movement induced by the vapor flow in deep penetration laser welding[J]. Journal of Laser Applications, 2006, 18(1): 2~11

[14] 杨德才. 激光焊接两种异常现象的分析[J]. 激光杂志, 2001, 22(4): 44~46

    Yang Decai. Analysis on two different abnormal phenomenon in laser welding[J]. Laser Journal, 2001, 22(4): 44~46

崔海超, 芦凤桂, 唐新华, 姚舜. 激光焊接熔池流动性试验研究[J]. 中国激光, 2011, 38(6): 0603004. Cui Haichao, Lu Fenggui, Tang Xinhua, Yao Shun. Experimental Research on Fluidity of Laser Welded Molten Pool[J]. Chinese Journal of Lasers, 2011, 38(6): 0603004.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!