光学 精密工程, 2019, 27 (3): 645, 网络出版: 2019-05-30  

表面等离子电磁波吸收器发展及应用

Development and applications of plasmonics electromagnetic wave absorbers
黎永前 1,2,*余洋 1,2苏磊 2
作者单位
1 西北工业大学 深圳研究院, 广东 深圳 518057
2 西北工业大学 空天微纳系统教育部重点实验室, 陕西 西安 710072
摘要
基于金属-电介质-金属表面等离子谐振原理的电磁波吸收器, 可以实现多波长及宽波段入射电磁波吸收, 其电磁波敏感波长决定于微纳结构的阵列形式、单元结构尺寸。从材料特性和结构匹配角度讨论了表面等离子电磁波吸收器的吸收机理; 重点介绍不同微纳结构单元及阵列形式的吸收器的发展; 介绍了微纳结构阵列吸收器在选择性热辐射、生物检测以及光电探测方面的应用; 最后探讨了吸收器的谐振频谱可调性、以及提高吸收效率和能量转换等问题。
Abstract
Plasmonic electromagnetic wave absorbers based on metal-dielectric-metal nanostructures can achieve single and multi-band absorption. Their multiplex absorption spectra depend on the pattern and dimensions of the nanostructures rather than the materials they are made of. In this progress report, an overview of this field was provided, first summarizing the absorption mechanism from the perspective of materials and the nanostructure, and subsequently discussing a selection of examples focusing on their extreme performance flexibility. The already developed and potential applications, including selective thermal radiator, biosensor, and photoelectric detector were introduced. Finally, we explore the expectations in this rapidly developing field and the future challenges, including dynamic tunability and energy conversion.
参考文献

[1] GARC A DE ABAJO F J. Colloquium: light scattering by particle and hole arrays [J]. Reviews of Modern Physics, 2007, 79(4): 1267-1290.

[2] LIU Y, ZHANG X. Metamaterials: a new frontier of science and technology [J]. Chem Soc Rev, 2011, 40(5): 2494-2507.

[3] OGAWA S, FUJISAWA D, HATA H, et al.. Absorption properties of simply fabricated all-metal mushroom plasmonic metamaterials incorporating tube-shaped posts for multi-color uncooled infrared image sensor applications [J]. Photonics, 2016, 3(1): 9-16.

[4] DAO T D, ISHII S, YOKOYAMA T, et al.. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors [J]. Acs Photonics, 2016, 3(7): 1271-1278.

[5] ALTUG H. Nano-optics: Principles Enabling Basic Research and Applications [M]. Dordrecht: Springer, 2017.

[6] LANDY N I, SAJUYIGBE S, MOCK J J, et al.. Perfect metamaterial absorber [J]. Phys Rev Lett, 2008, 100(20): 207402.

[7] 黎永前, 王斌斌, 苏磊, 等. 微纳结构红外吸收材料光学常数的解析模型[J]. 光学学报, 2013, 33(12): 1216002-08.

    LI Y Q, WANG B B, SU L, et al.. Analytic model of optical constants for infrared absorption material with nanostructure [J]. Acta Optica Sinica, 2013, 33(12): 1216002-08. (in Chinese)

[8] WATTS C M, LIU X, PADILLA W J. Metamaterial electromagnetic wave absorbers [J]. Adv Mater, 2012, 24(23): 98-120.

[9] OGAWA S, KIMATA M. Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review [J]. Materials (Basel), 2018, 11(3): 458-475.

[10] CUI Y X, HE Y R, JIN Y, et al.. Plasmonic and metamaterial structures as electromagnetic absorbers [J]. Laser & Photonics Reviews, 2014, 8(4): 495-520.

[11] TAO H, BINGHAM C M, STRIKWERDA A C, et al.. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization [J]. Physical Review B, 2008, 78(24): 241103.

[12] WEN Q Y, ZHANG H W, XIE Y S, et al.. Dual band terahertz metamaterial absorber: design, fabrication, and characterization [J]. Applied Physics Letters, 2009, 95(24): 241111.

[13] ALICI K B, TURHAN A B, SOUKOULIS C M, et al.. Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration [J]. Opt Express, 2011, 19(15): 14260-14267.

[14] 刘媛媛, 熊广, 王杨, 等. 多谐振U形缝隙纳米天线设计及吸收特性[J]. 光学 精密工程, 2017, 25(8): 2155-2164.

    LIU Y Y, XIONG G, WANG Y, et al.. Design of multi resonant U shaped slots nano-antenna and their absorption properties [J]. Opt. Precision Eng., 2017, 25(8): 2155-2164. (in Chinese)

[15] MA Y, CHEN Q, GRANT J, et al.. A terahertz polarization insensitive dual band metamaterial absorber [J]. Opt Lett, 2011, 36(6): 945-947.

[16] WANG L, HU C D, WU X X, et al.. Multi-band metamaterial absorber with arbitrary polarization and wide-incident angle [J]. Applied Physics a-Materials Science & Processing, 2017, 123(10): 651.

[17] HUANG X J, YANG H L, YU S Q, et al.. Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber [J]. Journal of Applied Physics, 2013, 113(21): 213516.

[18] LEE H M, WU J C. A wide-angle dual-band infrared perfect absorber based on metal-dielectric-metal split square-ring and square array [J]. Journal of Physics D-Applied Physics, 2012, 45(20): 205101.

[19] WANG J, CHEN Y T, HAO J M, et al.. Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared [J]. Journal of Applied Physics, 2011, 109(7): 074510.

[20] HAO J M, WANG J, LIU X L, et al.. High performance optical absorber based on a plasmonic metamaterial [J]. Applied Physics Letters, 2010, 96(25): 251104.

[21] HAO J M, ZHOU L, QIU M. Nearly total absorption of light and heat generation by plasmonic metamaterials [J]. Physical Review B, 2011, 83(16): 165107.

[22] USTUN K, TURHAN-SAYAN G. Wide bandwidth absorption in the mwir region using a thin and simple metamaterial absorber [C]. 2017 Iv International Electromagnetic Compatibility Conference, Turkiye, 2017: 1-4.

[23] LEI L, LI S, HUANG H, et al.. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial [J]. Opt Express, 2018, 26(5): 5686-5693.

[24] ZHANG Z, YU Z, LIANG Y, et al.. Dual-band nearly perfect absorber at visible frequencies [J]. Optical Materials Express, 2018, 8(2): 463.

[25] LIU X, STARR T, STARR A F, et al.. Infrared spatial and frequency selective metamaterial with near-unity absorbance [J]. Phys Rev Lett, 2010, 104(20): 207403.

[26] GRANT J, KENNEY M, SHAH Y D, et al.. CMOS compatible metamaterial absorbers for hyperspectral medium wave infrared imaging and sensing applications [J]. Opt Express, 2018, 26(8): 10408-10420.

[27] WANG B X, WANG G Z, SANG T. Simple design of novel triple-band terahertz metamaterial absorber for sensing application [J]. Journal of Physics D: Applied Physics, 2016, 49(16): 165307.

[28] GRANT J, MA Y, SAHA S, et al.. Polarization insensitive terahertz metamaterial absorber [J]. Opt Lett, 2011, 36(8): 1524-1526.

[29] CHENG H, CHEN S Q, YANG H F, et al.. A polarization insensitive and wide-angle dual-band nearly perfect absorber in the infrared regime [J]. Journal of Optics, 2012, 14(8): 085102.

[30] KONG H, LI G F, JIN Z M, et al.. Polarization-independent metamaterial absorber for terahertz frequency [J]. Journal of Infrared Millimeter And Terahertz Waves, 2012, 33(6): 649-656.

[31] CHEN J F, HU Z Y, WANG S M, et al.. A triple-band, polarization-and incident angle-independent microwave metamaterial absorber with interference theory [J]. European Physical Journal B, 2016, 89(1): 14-22.

[32] AZAD A K, KORT-KAMP W J, SYKORA M, et al.. Metasurface broadband solar absorber [J]. Sci Rep, 2016, 6: 20347.

[33] HUANG X T, LU C H, RONG C C, et al.. Wide angle of incidence-insensitive polarization-independent thz metamaterial absorber for both te and tm mode based on plasmon hybridizations [J]. Materials (Basel), 2018, 11(5): 671-682.

[34] TAO H, STRIKWERDA A C, FAN K, et al.. Reconfigurable terahertz metamaterials [J]. Phys Rev Lett, 2009, 103(14): 147401.

[35] PITCHAPPA P, MANJAPPA M, HO C P, et al.. Active control of electromagnetically induced transparency analog in terahertz mems metamaterial [J]. Advanced Optical Materials, 2016, 4(4): 541-547.

[36] WANG R, LI L, LIU J, et al.. Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal [J]. Optics Express, 2017, 25(26): 32280.

[37] CHEN H T, PADILLA W J, ZIDE J M, et al.. Active terahertz metamaterial devices [J]. Nature, 2006, 444(7119): 597-600.

[38] MA B, LIU S, KONG X, et al.. A novel wide-band tunable metamaterial absorber based on varactor diode/graphene [J]. Optik-International Journal for Light and Electron Optics, 2016, 127(5): 3039-3043.

[39] ZHAO Y T, WU B, HUANG B J, et al.. Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface [J]. Opt Express, 2017, 25(7): 7161-7169.

[40] KIM H K, LEE D, LIM S. Frequency-tunable metamaterial absorber using a varactor-loaded fishnet-like resonator [J]. Applied Optics, 2016, 55(15): 4113.

[41] PUSCASU I, SCHAICH W L. Narrow-band, tunable infrared emission from arrays of microstrip patches [J]. Applied Physics Letters, 2008, 92(23): 233102.

[42] LIU X, TYLER T, STARR T, et al.. Taming the blackbody with infrared metamaterials as selective thermal emitters [J]. Phys Rev Lett, 2011, 107(4): 045901.

[43] LIU B, GONG W, YU B, et al.. Perfect thermal emission by nanoscale transmission line resonators [J]. Nano Lett, 2017, 17(2): 666-672.

[44] LIU N, MESCH M, WEISS T, et al.. Infrared perfect absorber and its application as plasmonic sensor [J]. Nano Lett, 2010, 10(7): 2342-2348.

[45] CHEN K, ADATO R, ALTUG H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy [J]. ACS Nano, 2012, 6(9): 7998-8006.

[46] CETIN A E, KORKMAZ S, DURMAZ H, et al.. Quantification of multiple molecular fingerprints by dual-resonant perfect absorber [J]. Advanced Optical Materials, 2016, 4(8): 1274-1280.

[47] 黎永前, 苏磊, 满力, 等. 微纳流体光波导技术及其在生物传感器中的应用[J]. 光学 精密工程, 2013, 21(4): 987-999.

    LI Y Q, SU L, MAN L, et al.. Optofluidic waveguides and their applications to biological sensors [J]. Opt. Precision Eng., 2013, 21(4): 987-999. (in Chinese)

[48] Trtica M S, Gakovic B M, Radak B B, et al.. Material surface modification by ns, ps and fs laser pulses[J]. Opt. Precision Eng., 2011, 19(2): 221-227.

[49] ATWATER H A, POLMAN A. Plasmonics for improved photovoltaic devices [J]. Nat Mater, 2010, 9(3): 205-213.

[50] HAGGLUND C, APELL S P. Plasmonic near-field absorbers for ultrathin solar cells [J]. J Phys Chem Lett, 2012, 3(10): 1275-1285.

[51] AYDIN K, FERRY V E, BRIGGS R M, et al.. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J]. Nat Commun, 2011, 1(11): 517-523.

[52] WANG W, QU Y, DU K, et al.. Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high-ε″ metals [J]. Applied Physics Letters, 2017, 110(10): 101101.

[53] TITTL A, MICHEL A K, SCHAFERLING M, et al.. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability [J]. Adv Mater, 2015, 27(31): 4597-4603.

[54] CHEN X, CHEN Y, YAN M, et al.. Nanosecond photothermal effects in plasmonic nanostructures [J]. ACS Nano, 2012, 6(3): 2550-2557.

[55] GUILLOT N, DE LA CHAPELLE M L. Lithographied nanostructures as nanosensors [J]. Journal of Nanophotonics, 2012, 6(1): 064506.

[56] TRAUB M C, LONGSINE W, TRUSKETT V N. Advances in nanoimprint lithography [J]. Annu Rev Chem Biomol Eng, 2016, 7: 583-604.

[57] LEE Y K, LEE H, LEE C, et al.. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes [J]. J Phys Condens Matter, 2016, 28(25): 254006.

[58] GUO N, HU W, JIANG T, et al.. High-quality infrared imaging with graphene photodetectors at room temperature [J]. Nanoscale, 2016, 8(35): 16065-16072.

[59] LUNDEBERG M B, GAO Y, WOESSNER A, et al.. Thermoelectric detection and imaging of propagating graphene plasmons [J]. Nat Mater, 2017, 16(2): 204-207.

[60] GUO Q, LI C, DENG B, et al.. Infrared nanophotonics based on graphene plasmonics [J]. ACS Photonics, 2017, 4(12): 2989-2999.

[61] LOW T, AVOURIS P. Graphene plasmonics for terahertz to mid-infrared applications [J]. ACS Nano, 2014, 8(2): 1086-1101.

[62] LI W, VALENTINE J G. Harvesting the loss: surface plasmon-based hot electron photodetection [J]. Nanophotonics, 2017, 6(1): 177-191.

[63] NG C, CADUSCH J J, DLIGATCH S, et al.. Hot carrier extraction with plasmonic broadband absorbers [J]. ACS Nano, 2016, 10(4): 4704-4711.

[64] LEE W R, NAVARRETE J, EVANKO B, et al.. A plasmonic liquid junction photovoltaic cell with greatly improved power conversion efficiency [J]. Chem Commun (Camb), 2016, 52(92): 13460-13462.

[65] SAKHDARI M, HAJIZADEGAN M, FARHAT M, et al.. Efficient, broadband and wide-angle hot-electron transduction using metal-semiconductor hyperbolic metamaterials [J]. Nano Energy, 2016, 26: 371-381.

[66] HO Y L, TAI Y H, CLARK J K, et al.. Plasmonic hot-carriers in channel-coupled nanogap structure for metal-semiconductor barrier modulation and spectral-selective plasmonic monitoring [J]. ACS Photonics, 2018, 5(7): 2617-2623.

黎永前, 余洋, 苏磊. 表面等离子电磁波吸收器发展及应用[J]. 光学 精密工程, 2019, 27(3): 645. LI Yong-qian, YU Yang, SU Lei. Development and applications of plasmonics electromagnetic wave absorbers[J]. Optics and Precision Engineering, 2019, 27(3): 645.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!