激光与光电子学进展, 2017, 54 (9): 092801, 网络出版: 2017-09-06  

不同因素对地面三维激光扫描点云精度的影响 下载: 762次

Impacts of Different Factors on Accuracy of Point Cloud Obtained from Terrestrial Three-Dimensional Laser Scanning
蔡越 1,*徐文兵 1,2梁丹 1李翀 1,3陈佐 1
作者单位
1 浙江农林大学省部共建亚热带森林培育国家重点实验室, 浙江 临安 311300
2 同济大学测绘与地理信息学院, 上海 200092
3 北京林业大学林学院, 北京 100083
摘要
影响地面三维激光扫描点云精度的因素有很多, 它们共同存在且交互影响, 研究各因素及其交互作用对点云数量、点云反射强度和点云标准偏差的影响有利于有效地提高地面点云精度。选择目标物的颜色、粗糙度、距离作为研究对象, 利用多因素方差分析法、多元线性回归分析法, 分析了各因素及其交互作用影响的显著性, 并拟合了点云标准偏差和点云反射强度的回归方程。研究结果表明:目标物距离对点云数量的影响较大, 5 m距离的点云数量约是30 m距离的40倍, 距离与点云数量成反比; 目标物颜色对点云反射强度的影响较大, 白色最大点云强度可达0.54, 而黑色只有0.18, 点云反射强度从大到小为白色、绿色、蓝色、红色、黑色; 目标物距离对地面三维激光扫描点云标准偏差影响最大, 30 m距离的点云标准偏差是5 m距离的3倍左右, 颜色次之, 粗糙度的影响不明显, 点云标准偏差与点云反射强度具有幂函数关系。
Abstract
Many factors affect the accuracy of the point cloud obtained from terrestrial three-dimentional laser scanning. These factors exist together and influence each other. Therefore, it is useful to effectively improve the accuracy of the point cloud by studying the effect of each factor and their interaction on the number, reflection intensity and standard deviation of point cloud. Set the target color, roughness and distance as the study objects. By using multi-factor variance analysis method and multiple linear regression method, the significance of the influence of the various factors and their interactions are analyzed, and regression equations between the standard deviation and reflection intensity of point cloud are fitted. Results show that distance of target object has a significant impact on the number of point cloud. The number of point cloud at 5 m is about forty times as much as the number at 30 m. Distance is inversely proportional to the number of point cloud. Color of target object has a significant impact on the reflection intensity of point cloud. The strongest reflection intensity of point cloud for white is 0.54, and the one for black is 0.18. The reflection intensity of point cloud from strongest to weakest is white, green, blue, red, black. Distance of the target object has greatest impact on the standard deviation of point cloud obtained from terrestrial three-dimensional laser scanning. The standard deviation of point cloud at 30 m is three times as much as the value at 5 m. And color is taken the second place, however the effect of the roughness is not obvious. There is a power function relation between the standard deviation and reflection intensity of point cloud.
参考文献

[1] 王 峰, 林 鸿, 李长辉. 地面三维激光扫描技术在城市测绘中的应用[J]. 测绘通报, 2012(5): 47-49.

    Wang Feng, Lin Hong, Li Changhui. Application of terrestrial 3D laser scanning technology in urban surveying[J]. Bulletin of Surveying and Mapping, 2012(5): 47-49.

[2] 谭 凯, 程效军. 基于多项式模型的TLS激光强度值改正[J]. 中国激光, 2015, 42(3): 0314002.

    Tan Kai, Cheng Xiaojun. TLS laser intensity correction based on polynomial model[J]. Chinese J Lasers, 2015, 42(3): 0314002.

[3] 蔡润彬. 地面激光扫描数据后处理若干关键技术研究[D]. 上海: 同济大学, 2008.

    Cai Runbin. Registration of range images and planar regions extraction from TLS point cloud[D]. Shanghai:Tongji University, 2008.

[4] 郑德华, 沈云中, 刘 春. 三维激光扫描仪及其测量误差影响因素分析[J]. 测绘工程, 2005, 14(2): 32-34.

    Zheng Dehua, Shen Yunzhong, Liu Chun. 3D laser scanner and its effect factor analysis of surveying error[J]. Engineering of Surveying and Mapping, 2005, 14(2): 32-34.

[5] Reshetyuk Y. Investigation and calibration of pulsed time-of-flight terrestrial laser scanners[D]. Stockolm: Royal Institute of Technology, 2006.

[6] 李佳龙, 郑德华, 何 丽, 等. 目标颜色和入射角对Trimble GX扫描点云精度的影响[J]. 测绘工程, 2012, 21(5): 75-79.

    Li Jialong, Zheng Dehua, He Li, et al. The effects of known color and incidence angle on the accuracy of Trimble GX 3D scanning point cloud[J]. Engineering of Surveying and Mapping, 2012, 21(5): 75-79.

[7] Lichti D D, Harvey B R. The Effects of reflecting surface material properties on time-of-flight laser scanner measurements[C].Ottawa: Symposium on Geospatial Theory Proceedings & Applications, 2002.

[8] 刘 春, 张蕴灵, 吴杭彬. 地面三维激光扫描仪的检校与精度评估[J]. 工程勘察, 2009, 37(11): 56-60.

    Liu Chun, Zhang Yunling, Wu Hangbin. Accuracy evaluation of 3D laser range scanner based on field calibration[J]. Journal of Geotechnical Investigation & Surveying, 2009, 37(11): 56-60.

[9] 官云兰. 地面三维激光数据处理中的若干问题研究[D]. 上海: 同济大学, 2008.

    Guan Yunlan. Study on the data processing of terrestrial laser scanner[D]. Shanghai: Tongji University, 2008.

[10] 官云兰, 程效军, 詹新武, 等. 地面三维激光扫描仪系统误差标定[J]. 测绘学报, 2014, 43(7): 731-738.

    Guan Yunlan, Cheng Xiaojun, Zhan Xinwu, et al. Research on systematic errors calibration of terrestrial laser scanner[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7): 731-738.

[11] Gottwald R. Field procedures for testing terrestrial laser scanners (TLS): a contribution to a futrure ISO standard[C]. Proceedings of the FIG Working Week, 2008: 1-14.

[12] Clark J, Robson S. Accuracy of measurements made with a CYRAX 2500 laser scanner against surfaces of known colour[J]. Survey Review, 2004, 37(294): 626-638.

[13] Kaasalainen S, Jaakkola A, Kaasalainen M, et al. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: search for correction methods[J]. Remote Sensing, 2011, 3(10): 2207-2221.

[14] 卢秀山, 黄 磊. 基于激光扫描数据的建筑物信息格网化提取方法[J]. 武汉大学学报(信息科学版), 2007, 32(10): 852-855.

    Lu Xiushan, Huang Lei. Grid method on building information extraction using laser scanning data[J]. Geomatics and Information Science of Wuhan University, 2007, 32(10): 852-855.

[15] 王建军, 刘吉东. 影响机载激光扫描点云精度的测量误差因素分析及其影响大小排序[J]. 中国激光, 2014, 41(4): 0414001.

    Wang Jianjun, Liu Jidong. Analysis and sorting of impacts of measurement errors on positioning accuracy of laser point cloud obtained from airborne laser scanning[J]. Chinese J Lasers, 2014, 41(4): 0414001.

[16] 郑德华. 三维激光扫描影像拼接模型及实验分析[J]. 河海大学学报(自然科学版), 2005, 33(4): 465-471.

    Zheng Dehua. Three-dimensional laser scanning image combination model and experimental analysis[J]. Journal of Hohai University (Natural Sciences), 2005, 33(4): 465-471.

[17] 刘 春, 陈华云, 吴杭彬. 激光三维遥感的数据处理与特征提取[M]. 北京: 科学出版社, 2009.

    Liu Chun, Chen Huayun, Wu Hangbin. Data processing and feature extraction of 3D laser remote sensing[M]. Beijing: Science Press, 2009.

[18] Boehler W, Marbs A. Investigating laser scanner accuracy[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2003, 34: 696-701.

[19] 丁 巍. 浅述地面三维激光扫描技术及其点云误差分析[J]. 工程勘察, 2009(s2): 447-452.

    Ding Wei. Terrestrial laser scanning technology and error analysis of point cloud[J]. Journal of Geotechnical Investigation & Surveying, 2009(s2): 447-452.

[20] 曹先革, 张随甲, 司海燕, 等. 地面三维激光扫描点云数据精度影响因素及控制措施[J]. 测绘工程, 2014, 23(12): 5-11.

    Cao Xiange, Zhang Suijia, Si Haiyan, et al. The influence factors and control measures on point cloud data precision of ground three-dimensional laser scanning[J]. Engineering of Surveying and Mapping, 2014, 23(12): 5-11.

[21] Pfeifer N, Hofle B, Briese C, et al. Analysis of the backscattered energy in terrestrial laser scanning data[C]. Beijing: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37: 1045-1052.

[22] 夏国芳, 胡春梅, 曹毕铮, 等. 激光入射角度对点云反射强度的影响研究[J]. 激光杂志, 2016, 37(4): 11-13.

    Xia Guofang, Hu Chunmei, Cao Bizheng, et al. Study on the influence of laser incident angle on the reflection intensity of the point cloud[J]. Laser Journal, 2016, 37(4): 11-13.

蔡越, 徐文兵, 梁丹, 李翀, 陈佐. 不同因素对地面三维激光扫描点云精度的影响[J]. 激光与光电子学进展, 2017, 54(9): 092801. Cai Yue, Xu Wenbing, Liang Dan, Li Chong, Chen Zuo. Impacts of Different Factors on Accuracy of Point Cloud Obtained from Terrestrial Three-Dimensional Laser Scanning[J]. Laser & Optoelectronics Progress, 2017, 54(9): 092801.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!