人工晶体学报, 2020, 49 (4): 729, 网络出版: 2020-06-15  

太阳能电池中石墨烯的应用进展

Application Progress on Graphene in Solar Cells
陈睿 1,2田楠 1,2郑国源 1,2王吉林 1,2龙飞 1,2,*
作者单位
1 桂林理工大学材料科学与工程学院,广西光电材料与器件重点实验室,桂林 541004
2 桂林理工大学,广西有色金属隐伏矿床勘察及材料开发协同创新中心,桂林 541004
引用该论文

陈睿, 田楠, 郑国源, 王吉林, 龙飞. 太阳能电池中石墨烯的应用进展[J]. 人工晶体学报, 2020, 49(4): 729.

CHEN Rui, TIAN Nan, ZHENG Guoyuan, WANG Jilin, LONG Fei. Application Progress on Graphene in Solar Cells[J]. Journal of Synthetic Crystals, 2020, 49(4): 729.

参考文献

[1] Chu Y, Meisen P. Review and comparison of different solar energy technologies[J].Global Energy Network Institute (GENI), San Diego, CA, 2011.

[2] Yadav A, Kumar P, RPSGOI M. Enhancement in efficiency of PV cell through P&O algorithm[J].International Journal for Technological Research in Engineering, 2015, 2:2642-2644.

[3] Castellano R N. Solar panel processing[M].Archives contemporaines, 2010.

[4] 曾卉洁.PERC电池或将在2028年成为主流技术[J].高科技与产业化,2019(7):28-30.

[5] 王 阳.太阳能光伏产业技术分析报告[J].高科技与产业化,2019(7):38-43.

[6] Lim E L, Yap C C, Jumali M H H, et al. A mini review:can graphene be a novel material for perovskite solar cell applications?[J].Nano-micro letters, 2018, 10(2):27.

[7] Grtzel M. Dye-sensitized solar cells[J].Journal of photochemistry and photobiology C:Photochemistry Reviews, 2003, 4(2):145-153.

[8] Roy-Mayhew J D, Aksay I A. Graphene materials and their use in dye-sensitized solar cells[J].Chemical reviews, 2014, 114(12):6323-6348.

[9] Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J].Science, 2019, 365(6454):687-691.

[10] Ahmad I, Khan U, Gun'ko Y K. Graphene, carbon nanotube and ionic liquid mixtures:towards new quasi-solid state electrolytes for dye sensitised solar cells[J].Journal of Materials Chemistry,2011,21(42):16990-16996.

[11] Jung M H, Kang M G, Chu M J. Iodide-functionalized graphene electrolyte for highly efficient dye-sensitized solar cells[J].Journal of Materials Chemistry, 2012, 22(32):16477-16483.

[12] Velten J A, Carretero-González J, Castillo-Martínez E, et al. Photoinduced optical transparency in dye-sensitized solar cells containing graphene nanoribbons[J].The Journal of Physical Chemistry C, 2011, 115(50):25125-25131.

[13] Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J].Journal of the American Chemical Society, 2008, 130(18):5856-5857.

[14] Zheng H, Neo C Y, Mei X, et al. Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells[J].Journal of Materials Chemistry, 2012, 22(29):14465-14474.

[15] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J].Nano letters, 2008, 8(1):323-327.

[16] Kim S R, Parvez M K, Chhowalla M. UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells[J].Chemical Physics Letters, 2009, 483(1-3):124-127.

[17] Chen T, Hu W, Song J, et al. Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells[J].Advanced Functional Materials, 2012, 22(24):5245-5250.

[18] Durantini J, Boix P P, Gervaldo M, et al. Photocurrent enhancement in dye-sensitized photovoltaic devices with titania-graphene composite electrodes[J].Journal of Electroanalytical Chemistry, 2012, 683:43-46.

[19] Tang B, Hu G. Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell[J].Journal of Power Sources, 2012, 220:95-102.

[20] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society, 2009, 131(17):6050-6051.

[21] Akkerman Q A, Rainò G, Kovalenko M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J].Nature Materials, 2018, 17(5):394.

[22] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J].Nature photonics, 2014, 8(7):506.

[23] Jung H S, Park N G. Perovskite solar cells:from materials to devices[J].small, 2015, 11(1):10-25.

[24] Sum T C, Mathews N. Advancements in perovskite solar cells:photophysics behind the photovoltaics[J].Energy & Environmental Science, 2014, 7(8):2518-2534.

[25] Markvart T, Castaer L. Principles of solar cell operation[M].McEvoy’s Handbook of Photovoltaics. Academic Press, 2018:3-28.

[26] Schlatmann A R, Floet D W, Hilberer A, et al. Indium contamination from the indium-tin-oxide electrode in polymer light-emitting diodes[J].Applied physics letters, 1996, 69(12):1764-1766.

[27] Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J].Nature, 2004, 428(6986):911.

[28] Chen Z, Cotterell B, Wang W, et al. A mechanical assessment of flexible optoelectronic devices[J].Thin Solid Films, 2001, 394(1-2):201-205.

[29] Shin S H, Shin D H, Choi S H. Enhancement of stability of inverted flexible perovskite solar cells by employing graphene-quantum-dots hole transport layer and graphene transparent electrode codoped with gold nanoparticles and Bis (trifluoromethanesulfonyl) amide[J].ACS Sustainable Chemistry & Engineering, 2019, 7(15):13178-13185.

[30] Heo J H, Shin D H, Kim S, et al. Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes[J].Chemical Engineering Journal, 2017, 323:153-159.

[31] You P, Liu Z, Tai Q, et al. Efficient semitransparent perovskite solar cells with graphene electrodes[J].Advanced Materials, 2015, 27(24):3632-3638.

[32] Liu Z, You P, Xie C, et al. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J].Nano Energy, 2016, 28:151-157.

[33] Yoon J, Sung H, Lee G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes:towards future foldable power sources[J].Energy & Environmental Science, 2017, 10(1):337-345.

[34] Sung H, Ahn N, Jang M S, et al. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency[J].Advanced Energy Materials, 2016, 6(3):1501873.

[35] Tongay S, Berke K, Lemaitre M, et al. Stable hole doping of graphene for low electrical resistance and high optical transparency[J].Nanotechnology, 2011, 22(42):425701.

[36] Kim D, Lee D, Lee Y, et al. Work-function engineering of graphene anode by bis (trifluoromethanesulfonyl) amide doping for efficient polymer light-emitting diodes[J].Advanced Functional Materials, 2013, 23(40):5049-5055.

[37] Kim Y, Ryu J, Park M, et al. Vapor-phase molecular doping of graphene for high-performance transparent electrodes[J].ACS Nano, 2013, 8(1):868-874.

[38] Jo I, Kim Y, Moon J, et al. Stable n-type doping of graphene via high-molecular-weight ethylene amines[J].Physical Chemistry Chemical Physics, 2015, 17(44):29492-29495.

[39] Shin D H, Jang C W, Lee H S, et al. Semitransparent flexible organic solar cells employing doped-graphene layers as anode and cathode electrodes[J].ACS applied materials & interfaces, 2018, 10(4):3596-3601.

[40] Wang J, Wang Y, He D, et al. Polymer bulk heterojunction photovoltaic devices based on complex donors and solution-processable functionalized graphene oxide[J].Solar Energy Materials and Solar Cells, 2012, 96:58-65.

[41] Yu D, Park K, Durstock M, et al. Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices[J].The Journal of Physical Chemistry Letters, 2011, 2(10):1113-1118.

[42] Wang S, Goh B M, Manga K K, et al. Graphene as atomic template and structural scaffold in the synthesis of graphene-organic hybrid wire with photovoltaic properties[J].ACS Nano, 2010, 4(10):6180-6186.

[43] Liu Z, He D, Wang Y, et al. Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells[J].Solar Energy Materials and Solar Cells, 2010, 94(7):1196-1200.

[44] Kim B J, Kim D H, Lee Y Y, et al. Highly efficient and bending durable perovskite solar cells:toward a wearable power source[J].Energy & Environmental Science, 2015, 8(3):916-921.

[45] Heo J H, Lee M H, Han H J, et al. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells[J].Journal of Materials Chemistry A, 2016, 4(5):1572-1578.

[46] Wu Z, Bai S, Xiang J, et al. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor[J].Nanoscale, 2014, 6(18):10505-10510.

[47] Song Y, Osherov A, Bulovic' V, et al. Graphene-perovskite schottky barrier solar cells[J].Advanced Sustainable Systems,2018,2(4):1700106.

[48] Lee S, Yeo J S, Ji Y, et al. Flexible organic solar cells composed of P3HT∶PCBM using chemically doped graphene electrodes[J].Nanotechnology, 2012, 23(34):344013.

[49] Kniepert J, Lange I, Heidbrink J, et al. Effect of solvent additive on generation, recombination, and extraction in PTB7∶PCBM solar cells:A conclusive experimental and numerical simulation study[J].The Journal of Physical Chemistry C, 2015, 119(15):8310-8320.

[50] Wang J T W, Ball J M, Barea E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J].Nano letters, 2013, 14(2):724-730.

[51] Peurifoy S R, Castro E, Liu F, et al. Three-dimensional graphene nanostructures[J].Journal of the American Chemical Society, 2018, 140(30):9341-9345.

[52] Habisreutinger S N, Leijtens T, Eperon G E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J].Nano letters, 2014, 14(10):5561-5568.

[53] Frost J M, Butler K T, Brivio F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J].Nano letters, 2014, 14(5):2584-2590.

[54] Jiao Y, Ma F, Gao G, et al. Graphene-covered perovskites:an effective strategy to enhance light absorption and resist moisture degradation[J].RSC Advances, 2015, 5(100):82346-82350.

[55] Hu X, Jiang H, Li J, et al. Air and thermally stable perovskite solar cells with CVD-graphene as the blocking layer[J].Nanoscale, 2017, 9(24):8274-8280.

[56] Bi E, Chen H, Xie F, et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells[J].Nature communications, 2017, 8:15330.

[57] Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J].Science, 2019, 365(6454):687-691.

[58] Ohta T, Bostwick A, Seyller T, et al. Controlling the electronic structure of bilayer graphene[J].Science, 2006, 313(5789):951-954.

[59] Guerrero A, You J, Aranda C, et al. Interfacial degradation of planar lead halide perovskite solar cells[J].ACS Nano, 2015, 10(1):218-224.

[60] Domanski K, Correa-Baena J P, Mine N, et al. Not all that glitters is gold:metal-migration-induced degradation in perovskite solar cells[J].ACS nano, 2016, 10(6):6306-6314.

陈睿, 田楠, 郑国源, 王吉林, 龙飞. 太阳能电池中石墨烯的应用进展[J]. 人工晶体学报, 2020, 49(4): 729. CHEN Rui, TIAN Nan, ZHENG Guoyuan, WANG Jilin, LONG Fei. Application Progress on Graphene in Solar Cells[J]. Journal of Synthetic Crystals, 2020, 49(4): 729.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!