人工晶体学报, 2020, 49 (4): 729, 网络出版: 2020-06-15  

太阳能电池中石墨烯的应用进展

Application Progress on Graphene in Solar Cells
陈睿 1,2田楠 1,2郑国源 1,2王吉林 1,2龙飞 1,2,*
作者单位
1 桂林理工大学材料科学与工程学院,广西光电材料与器件重点实验室,桂林 541004
2 桂林理工大学,广西有色金属隐伏矿床勘察及材料开发协同创新中心,桂林 541004
摘要
太阳能电池是一种取之不尽用之不竭的能源,而太阳能电池效率较低严重阻碍了其在商业领域中的发展。近几年来,石墨烯及其衍生物的合成和应用发展迅速,以优异的电学、力学、光学性能有望应用于提高太阳能电池效率并取代传统透明导电氧化物。本文综述了近年来在太阳能电池领域,石墨烯作为导电电极、载流子输送材料和稳定剂材料的应用进展。
Abstract
Solar cell is a kind of inexhaustible energy, and its development in the commercial field was limited owing to its low efficiency seriously. In recent years, the synthesis and application of graphene and its derivatives have been rapidly developed. Due to its excellent electrical, mechanical and optical properties, graphene and its derivatives are expected to be applied to improve solar cell efficiency and replace the traditional transparent conductive oxide. In this paper, the application of graphene as conductive electrode, carrier transport material and stabilizer in solar cell is reviewed.
参考文献

[1] Chu Y, Meisen P. Review and comparison of different solar energy technologies[J].Global Energy Network Institute (GENI), San Diego, CA, 2011.

[2] Yadav A, Kumar P, RPSGOI M. Enhancement in efficiency of PV cell through P&O algorithm[J].International Journal for Technological Research in Engineering, 2015, 2:2642-2644.

[3] Castellano R N. Solar panel processing[M].Archives contemporaines, 2010.

[4] 曾卉洁.PERC电池或将在2028年成为主流技术[J].高科技与产业化,2019(7):28-30.

[5] 王 阳.太阳能光伏产业技术分析报告[J].高科技与产业化,2019(7):38-43.

[6] Lim E L, Yap C C, Jumali M H H, et al. A mini review:can graphene be a novel material for perovskite solar cell applications?[J].Nano-micro letters, 2018, 10(2):27.

[7] Grtzel M. Dye-sensitized solar cells[J].Journal of photochemistry and photobiology C:Photochemistry Reviews, 2003, 4(2):145-153.

[8] Roy-Mayhew J D, Aksay I A. Graphene materials and their use in dye-sensitized solar cells[J].Chemical reviews, 2014, 114(12):6323-6348.

[9] Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J].Science, 2019, 365(6454):687-691.

[10] Ahmad I, Khan U, Gun'ko Y K. Graphene, carbon nanotube and ionic liquid mixtures:towards new quasi-solid state electrolytes for dye sensitised solar cells[J].Journal of Materials Chemistry,2011,21(42):16990-16996.

[11] Jung M H, Kang M G, Chu M J. Iodide-functionalized graphene electrolyte for highly efficient dye-sensitized solar cells[J].Journal of Materials Chemistry, 2012, 22(32):16477-16483.

[12] Velten J A, Carretero-González J, Castillo-Martínez E, et al. Photoinduced optical transparency in dye-sensitized solar cells containing graphene nanoribbons[J].The Journal of Physical Chemistry C, 2011, 115(50):25125-25131.

[13] Xu Y, Bai H, Lu G, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J].Journal of the American Chemical Society, 2008, 130(18):5856-5857.

[14] Zheng H, Neo C Y, Mei X, et al. Reduced graphene oxide films fabricated by gel coating and their application as platinum-free counter electrodes of highly efficient iodide/triiodide dye-sensitized solar cells[J].Journal of Materials Chemistry, 2012, 22(29):14465-14474.

[15] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells[J].Nano letters, 2008, 8(1):323-327.

[16] Kim S R, Parvez M K, Chhowalla M. UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells[J].Chemical Physics Letters, 2009, 483(1-3):124-127.

[17] Chen T, Hu W, Song J, et al. Interface functionalization of photoelectrodes with graphene for high performance dye-sensitized solar cells[J].Advanced Functional Materials, 2012, 22(24):5245-5250.

[18] Durantini J, Boix P P, Gervaldo M, et al. Photocurrent enhancement in dye-sensitized photovoltaic devices with titania-graphene composite electrodes[J].Journal of Electroanalytical Chemistry, 2012, 683:43-46.

[19] Tang B, Hu G. Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell[J].Journal of Power Sources, 2012, 220:95-102.

[20] Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J].Journal of the American Chemical Society, 2009, 131(17):6050-6051.

[21] Akkerman Q A, Rainò G, Kovalenko M V, et al. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals[J].Nature Materials, 2018, 17(5):394.

[22] Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J].Nature photonics, 2014, 8(7):506.

[23] Jung H S, Park N G. Perovskite solar cells:from materials to devices[J].small, 2015, 11(1):10-25.

[24] Sum T C, Mathews N. Advancements in perovskite solar cells:photophysics behind the photovoltaics[J].Energy & Environmental Science, 2014, 7(8):2518-2534.

[25] Markvart T, Castaer L. Principles of solar cell operation[M].McEvoy’s Handbook of Photovoltaics. Academic Press, 2018:3-28.

[26] Schlatmann A R, Floet D W, Hilberer A, et al. Indium contamination from the indium-tin-oxide electrode in polymer light-emitting diodes[J].Applied physics letters, 1996, 69(12):1764-1766.

[27] Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic[J].Nature, 2004, 428(6986):911.

[28] Chen Z, Cotterell B, Wang W, et al. A mechanical assessment of flexible optoelectronic devices[J].Thin Solid Films, 2001, 394(1-2):201-205.

[29] Shin S H, Shin D H, Choi S H. Enhancement of stability of inverted flexible perovskite solar cells by employing graphene-quantum-dots hole transport layer and graphene transparent electrode codoped with gold nanoparticles and Bis (trifluoromethanesulfonyl) amide[J].ACS Sustainable Chemistry & Engineering, 2019, 7(15):13178-13185.

[30] Heo J H, Shin D H, Kim S, et al. Highly efficient CH3NH3PbI3 perovskite solar cells prepared by AuCl3-doped graphene transparent conducting electrodes[J].Chemical Engineering Journal, 2017, 323:153-159.

[31] You P, Liu Z, Tai Q, et al. Efficient semitransparent perovskite solar cells with graphene electrodes[J].Advanced Materials, 2015, 27(24):3632-3638.

[32] Liu Z, You P, Xie C, et al. Ultrathin and flexible perovskite solar cells with graphene transparent electrodes[J].Nano Energy, 2016, 28:151-157.

[33] Yoon J, Sung H, Lee G, et al. Superflexible, high-efficiency perovskite solar cells utilizing graphene electrodes:towards future foldable power sources[J].Energy & Environmental Science, 2017, 10(1):337-345.

[34] Sung H, Ahn N, Jang M S, et al. Transparent conductive oxide-free graphene-based perovskite solar cells with over 17% efficiency[J].Advanced Energy Materials, 2016, 6(3):1501873.

[35] Tongay S, Berke K, Lemaitre M, et al. Stable hole doping of graphene for low electrical resistance and high optical transparency[J].Nanotechnology, 2011, 22(42):425701.

[36] Kim D, Lee D, Lee Y, et al. Work-function engineering of graphene anode by bis (trifluoromethanesulfonyl) amide doping for efficient polymer light-emitting diodes[J].Advanced Functional Materials, 2013, 23(40):5049-5055.

[37] Kim Y, Ryu J, Park M, et al. Vapor-phase molecular doping of graphene for high-performance transparent electrodes[J].ACS Nano, 2013, 8(1):868-874.

[38] Jo I, Kim Y, Moon J, et al. Stable n-type doping of graphene via high-molecular-weight ethylene amines[J].Physical Chemistry Chemical Physics, 2015, 17(44):29492-29495.

[39] Shin D H, Jang C W, Lee H S, et al. Semitransparent flexible organic solar cells employing doped-graphene layers as anode and cathode electrodes[J].ACS applied materials & interfaces, 2018, 10(4):3596-3601.

[40] Wang J, Wang Y, He D, et al. Polymer bulk heterojunction photovoltaic devices based on complex donors and solution-processable functionalized graphene oxide[J].Solar Energy Materials and Solar Cells, 2012, 96:58-65.

[41] Yu D, Park K, Durstock M, et al. Fullerene-grafted graphene for efficient bulk heterojunction polymer photovoltaic devices[J].The Journal of Physical Chemistry Letters, 2011, 2(10):1113-1118.

[42] Wang S, Goh B M, Manga K K, et al. Graphene as atomic template and structural scaffold in the synthesis of graphene-organic hybrid wire with photovoltaic properties[J].ACS Nano, 2010, 4(10):6180-6186.

[43] Liu Z, He D, Wang Y, et al. Solution-processable functionalized graphene in donor/acceptor-type organic photovoltaic cells[J].Solar Energy Materials and Solar Cells, 2010, 94(7):1196-1200.

[44] Kim B J, Kim D H, Lee Y Y, et al. Highly efficient and bending durable perovskite solar cells:toward a wearable power source[J].Energy & Environmental Science, 2015, 8(3):916-921.

[45] Heo J H, Lee M H, Han H J, et al. Highly efficient low temperature solution processable planar type CH3NH3PbI3 perovskite flexible solar cells[J].Journal of Materials Chemistry A, 2016, 4(5):1572-1578.

[46] Wu Z, Bai S, Xiang J, et al. Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor[J].Nanoscale, 2014, 6(18):10505-10510.

[47] Song Y, Osherov A, Bulovic' V, et al. Graphene-perovskite schottky barrier solar cells[J].Advanced Sustainable Systems,2018,2(4):1700106.

[48] Lee S, Yeo J S, Ji Y, et al. Flexible organic solar cells composed of P3HT∶PCBM using chemically doped graphene electrodes[J].Nanotechnology, 2012, 23(34):344013.

[49] Kniepert J, Lange I, Heidbrink J, et al. Effect of solvent additive on generation, recombination, and extraction in PTB7∶PCBM solar cells:A conclusive experimental and numerical simulation study[J].The Journal of Physical Chemistry C, 2015, 119(15):8310-8320.

[50] Wang J T W, Ball J M, Barea E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J].Nano letters, 2013, 14(2):724-730.

[51] Peurifoy S R, Castro E, Liu F, et al. Three-dimensional graphene nanostructures[J].Journal of the American Chemical Society, 2018, 140(30):9341-9345.

[52] Habisreutinger S N, Leijtens T, Eperon G E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J].Nano letters, 2014, 14(10):5561-5568.

[53] Frost J M, Butler K T, Brivio F, et al. Atomistic origins of high-performance in hybrid halide perovskite solar cells[J].Nano letters, 2014, 14(5):2584-2590.

[54] Jiao Y, Ma F, Gao G, et al. Graphene-covered perovskites:an effective strategy to enhance light absorption and resist moisture degradation[J].RSC Advances, 2015, 5(100):82346-82350.

[55] Hu X, Jiang H, Li J, et al. Air and thermally stable perovskite solar cells with CVD-graphene as the blocking layer[J].Nanoscale, 2017, 9(24):8274-8280.

[56] Bi E, Chen H, Xie F, et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells[J].Nature communications, 2017, 8:15330.

[57] Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors[J].Science, 2019, 365(6454):687-691.

[58] Ohta T, Bostwick A, Seyller T, et al. Controlling the electronic structure of bilayer graphene[J].Science, 2006, 313(5789):951-954.

[59] Guerrero A, You J, Aranda C, et al. Interfacial degradation of planar lead halide perovskite solar cells[J].ACS Nano, 2015, 10(1):218-224.

[60] Domanski K, Correa-Baena J P, Mine N, et al. Not all that glitters is gold:metal-migration-induced degradation in perovskite solar cells[J].ACS nano, 2016, 10(6):6306-6314.

陈睿, 田楠, 郑国源, 王吉林, 龙飞. 太阳能电池中石墨烯的应用进展[J]. 人工晶体学报, 2020, 49(4): 729. CHEN Rui, TIAN Nan, ZHENG Guoyuan, WANG Jilin, LONG Fei. Application Progress on Graphene in Solar Cells[J]. Journal of Synthetic Crystals, 2020, 49(4): 729.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!