发光学报, 2017, 38 (1): 103, 网络出版: 2017-02-09  

典型放电气体的击穿场强阈值研究

Field Strength Threshold of Common Discharge Gases Breakdown
作者单位
脉冲功率激光技术国家重点实验室, 安徽 合肥230037
摘要
为了研究等离子体产生时的气体击穿特性,利用低气压条件下气体击穿场强阈值模型,分析了He、Ne、Ar、Kr、Xe和Hg蒸汽等6种典型放电气体的击穿阈值随入射波频率、电子温度、气体压强以及气体温度的变化规律。结果表明: 气体击穿阈值随气体压强的增大而减小,随气体温度、电子温度和入射脉冲频率的增大而增大。气体压强和入射频率对击穿阈值的影响大于气体温度和电子温度,在所考虑的范围内,气体压强对击穿场强的影响约为100 V/m,入射脉冲频率对击穿场强的影响为50~300 V/m,气体温度和电子温度对击穿场强的影响为20~30 V/m。当考虑气体压强、气体温度以及电子温度等因素的影响时,各种气体的击穿场强阈值产生的变化规律相类似;但考虑入射频率的影响时,不同气体的击穿场强阈值差异很大。在所考虑的典型放电气体中,Xe具有最低的击穿场强阈值,He的击穿阈值最大。
Abstract
In order to study the properties of gas breakdown while plasma occurs, the threshold value was calculated according to the model of field strength threshold under the lower atmospheric pressure. Six kinds of common discharge gases including helium, neon, argon, krypton, xenon, and mercury vapor were taken into account. Moreover, the related change rule was analyzed and described with the incident frequency, electron temperature, gas pressure, and gas temperature considered. The results show that the gas breakdown threshold is affected by the four factors mentioned above. On the one hand, it decreases while the gas pressure increases. On the other hand, it increases with the gas temperature, electron temperature, and incident frequency increasing. The effects of the gas pressure and incident frequency play more of a role than that of gas temperature and electron temperature. The value of breakdown threshold changes about 100 V/m due to the influence of gas pressure. Similarly, it changes 50 V/m to 300 V/m, and 20 V/m to 30 V/m with the effects of incident frequency and gas or electron temperature thought about. Whats more, the change rule is found to be similar for all kinds of charge gases when the effects of gas pressure, gas temperature, and electron temperature are thought over. But it varies while the incident frequency is considered. In addition, xenon has the smallest threshold value while helium having the largest one among the gases studied.
参考文献

[1] 余世里. 高功率微波武器效应及防护 [J]. 微波学报, 2014, 30(S2):147-151.

    YU S L. High power microwave weapons effect and hardening [J]. J. Microw., 2014, 30(S2):147-151. (in Chinese)

[2] KRLíN L, PAVLO P, PNEK R, et al.. Nonlinear effects in LH wave-plasma interaction [J]. Plasma Phys. Controlled Fusion, 2002, 44(2):159-170.

[3] BONAVENTURA Z, TRUNEC D, MEKO M, et al.. Theoretical study of pulsed microwave discharge in nitrogen [J]. Plasma Sources Sci. Technol., 2005, 14(4):751-756.

[4] BONAVENTURA Z, TRUNEC D, MEKO M, et al.. Self-consistent spatio-temporal simulation of pulsed microwave discharge [J]. J. Phys. D: Appl. Phys., 2008, 41(1):015210.

[5] MEKO M, BONAVENTURA Z, VAINA P, et al.. An experimental study of high power microwave pulsed discharge in nitrogen [J]. Plasma Sources Sci. Technol., 2006, 15(3):574-581.

[6] KIKEL A, ALTGILBERS L, MERRITT I, et al.. Plasma limiters, AIAA-98-2564 [R]. AIAA-98-2564, 1998.

[7] 周前红, 董志伟, 陈京元. 110 GHz微波电离大气产生等离子体过程的理论研究 [J]. 物理学报, 2011, 60(12):125202-1-12.

    ZHOU Q H, DONG Z W, CHEN J Y. Modeling of plasma pattern formation in 110 GHz microwave air breakdown [J]. Acta Phys. Sinica, 2011, 60(12):125202-1-12. (in Chinese)

[8] 杨一明, 袁成卫, 钱宝良. 空气和SF6气体击穿对微波传输的影响 [J]. 强激光与粒子束, 2012, 24(1):142-146.

    YANG Y M, YUAN C W, QIAN B L. Effect of air and SF6 breakdown on transmission of high power microwave [J]. High Power Laser Part. Beams, 2012, 24(1):142-146. (in Chinese)

[9] 舒楠, 张厚, 李圭源. 等,离子体在强电磁脉冲防护中的应用 [J]. 无线电工程, 2010, 40(10):55-57.

    SU N, ZHANG H, LI G Y. Research on application of plasma in EMP protection [J]. Radio Eng., 2010, 40(10):55-57. (in Chinese)

[10] YUAN Z C, SHI J M. Research on EM pulse protection property of plasma-microwave absorptive material-plasma sandwich structure [J]. Sci China Technol. Sci., 2010, 53(12):3221-3224.

[11] 程立, 时家明, 汪家春, 等. 单层柱状等离子体阵列对微波透射衰减影响的实验研究 [J]. 真空科学与技术学报, 2014, 34(12):183-185.

    CHENG L, SHI J M, WANG J C, et al.. Influence of one-layer cylindrical plasma array on microwave transmission attenuation [J]. Chin. J. Vac. Sci. Technol., 2014, 34(12):183-185. (in Chinese)

[12] 宋玮, 邵浩, 张治强, 等. 射频击穿等离子体对高功率微波传输特性的影响 [J]. 物理学报, 2014, 63(6):064101-1-5.

    SONG W, SHAO H, ZHANG Z Q, et al.. High power microwave propagation properties in radio frequency breakdown plasma [J]. Acta Phys. Sinica, 2014, 63(6):064101-1-5. (in Chinese)

[13] 郑灵, 赵青, 罗先刚, 等. 等离子体中电磁波传输特性理论与实验研究 [J]. 物理学报, 2012, 61(15):155203-1-7.

    ZHENG L, ZHAO Q, LUO X G, et al.. Theoretical and experimental studies of electromagnetic wave transmission in plasma [J]. Acta Phys. Sinica, 2012, 61(15):155203-1-7. (in Chinese)

李志刚, 程立, 汪家春, 王启超, 时家明. 典型放电气体的击穿场强阈值研究[J]. 发光学报, 2017, 38(1): 103. LI Zhi-gang, CHENG Li, WANG Jia-chun, WANG Qi-chao, SHI Jia-ming. Field Strength Threshold of Common Discharge Gases Breakdown[J]. Chinese Journal of Luminescence, 2017, 38(1): 103.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!