光子学报, 2017, 46 (4): 0423001, 网络出版: 2017-05-03   

基于平面光波导谐振腔的可调谐光电振荡器

Tunable Optoelectronic Oscillator Based on Planar Waveguide Resonator
作者单位
中北大学 仪器科学与动态测试教育部重点实验室, 太原 030051
摘要
提出了一种基于平面光波导谐振腔的可调谐光电振荡器.该振荡器中, 相位调制器串联光波导谐振腔, 取代了传统系统中的强度调制器、长光纤和滤波器.由于光学谐振腔对光子频率和相位敏感, 调节激光器改变输出光的波长, 不仅可以调制光的强度, 还可以对微波光子进行选频输出.当光子在波导腔中发生谐振时, 产生很强的延时特性, 可以取代传统系统中的长光纤.整个光电振荡器系统体积为长29.5 cm、宽21 cm、高7 cm.实验中, 改变0.1 pm的光子波长, 能够产生步长为12.5~35.5 MHz的调谐, 调谐范围达2 GHz, 且系统能够产生10 GHz的微波信号, 在中心频率为10 GHz处其相位噪声为-109.7 dBc/Hz@10 kHz.该研究为光电振荡器的小型化和实用化提供了一种新的思路.
Abstract
A tunable optical oscillator based on a planar optical waveguide resonator was proposed. In this oscllator, the phase modulator is connected in series with the optical waveguide resonant cavity to replace the intensity modulator, the long fiber and the filter in the traditional system. Because the optical resonator is particularly sensitive to photon frequency and photon phase, by adjusting the laser wavelength, not only the intensity of the light can be adjusted, but also the frequency of the microwave photons can be selected. When the photon is resonant in the waveguide cavity, it will produce a strong delay characteristic, which can be used to replace the long fiber in the traditional system. The whole photoelectric oscillator system volume is long 29.5 cm, wide 21 cm, high 7 cm. In the experiment, each time to change the photon wavelength 0.1 pm, resulting in a 12.5~35.5 MHz step tuning effect, tuning range of 2 GHz. The system generates a 10 GHz microwave signal having a phase noise of -109.7 dBc/Hz@10 kHz at a center frequency of 10 GHz. Which provides a new idea for the miniaturization and practical application of the optical oscillator.
参考文献

[1] JIANG Yang, YU Jin-long. An optical domain combined dual-Loop optoelectronic oscillator[J]. IEEE Photonics Letters, 2007, 19(11): 807-809.

[2] LI W, YAO J. A wideband frequency tunable optoelectronic oscillator incorporating a tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating[J]. IEEE Transactions on Microwave Theory & Techniques, 2012, 60(6): 1735-1742.

[3] KONG F, LI W, YAO J. Transverse load sensing based on a dual-frequency optoelectronic oscillator[J]. Optics Letters, 2013, 38(14): 2611-2613.

[4] ELIYAHU D, MATSKO A B, LLCHENKO VS, et al. Spectrally pure RF Photonic source based on a resonant optical hyper-parametric oscillator[J]. The International Society for Optical Engineering, 2014, 8960(1): 271-283.

[5] 袁慧超, 高燕宇.低相噪毫米波源的研制[J]. 半导体技术, 2009, 34(9): 927-929.

    YUAN Hui-chao, GAO Yan-yu. Research and complement of mm-wave low phase noise frequency synthesizer[J]. Semiconductor Technology, 2009, 34(9): 927-929.

[6] LUTE M, LIANG W, DANNY E, et al. Spectrally pure and stable hyper-parametric RF photonic oscillator[J]. IEEE International Frequency Control Symposium, 2014: 1-3.

[7] MALEKI L.The optoelectronic oscillator[J]. Nature photonics, 2011, 5(12): 728-730.

[8] LLCHENKO V S, BENNET A M, SANTINI P. Whispering gallery mode diamond resonator[J]. Optics Letters, 2013, 38(21): 4320-4323.

[9] TANG Zhen-zhou, PAN Shi-long, ZHU Dan, et al. Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG[J]. IEEE Photonics Technology Letter, 2012, 24(17): 1487-1489.

[10] ZHU Dan, PAN Shi-long, BEN De. Tunable frequency-quadrupling dual-loop optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2012, 24(3): 194-196.

[11] WANG Wen-ting, LI Wei, ZHU Ning-hua. Frequency quadrupling optoelectronic oscillator using a single polarization modulator in a Sagnac loop[J]. Optics Communications, 2014, 318(5): 162-165.

[12] LI Wei, LIU Jian-guo, ZHU Hua-ning. A widely and continuously tunable frequency doubling optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2015, 27(13): 1461-1464.

[13] STOKES L F, CHODOROW M, SHAW H J. All-single-mode fiber resonator[J]. Optics Letters, 1982, 7(6): 288-290.

[14] DREVER R W P, HALL J L, KOWALSK F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.

[15] BAMES J A, GAGKIAEDI G, LOOCK H P. Cavity-enhanced spectroscopy on silica microsphere resonators[J]. Springer, 2014, 179: 351-383.

[16] MILENKO K, KONIDAKIS I, PISSADAKIS S. Silver iodide phosphate glass microsphere resonator integrated on an optical fiber taper[J]. Optics Letters, 2016, 41(10): 2185-2188.

[17] 刘杰, 铁生年, 卢辉东. 多信道二维光子晶体滤波器[J]. 光学精密工程, 2016, 24(5): 1021-1027.

    LIU Jie, TIE Sheng-nian, LU Hui-dong. Multi-channel drop filter based on two-dimensional photonic crystal[j]. Optics and Precision Engineering, 2016, 24(5): 1021-1027.

[18] ELIYAHU D, LIANG W, ELIJAH D, et al. Resonant widely tunable optoelectronic oscillator[J]. IEEE Photonics Technology Letters, 2013, 25(15): 1535-1538.

[19] 李传起, 范庆斌, 陆叶, 等. 多信道异质结构光子晶体滤波器[J]. 光学精密工程, 2015, 23(8): 2171-2177.

    LI Chuan-qi, FAN Qing-bin, LU Ye, et al. Multi-channel heterophotonic crystal filter[J]. Optics and Precision Engineering, 2015, 23(8): 2171-2177.

陈猛, 薛晨阳, 唐军, 刘文耀, 郑永秋, 钱坤, 谢成峰. 基于平面光波导谐振腔的可调谐光电振荡器[J]. 光子学报, 2017, 46(4): 0423001. CHEN Meng, XUE Chen-yang, TANG Jun, LIU Wen-yao, ZHENG Yong-qiu, QIAN Kun, XIE Cheng-feng. Tunable Optoelectronic Oscillator Based on Planar Waveguide Resonator[J]. ACTA PHOTONICA SINICA, 2017, 46(4): 0423001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!