激光与光电子学进展, 2015, 52 (11): 112401, 网络出版: 2015-10-15   

低损耗表面等离子体波导慢光传输的研究 下载: 767次

Study on Slow Light of Surface Plasmon Waveguide with Low Loss
作者单位
桂林电子科技大学广西精密导航技术与应用重点实验室, 广西 桂林 541004
摘要
采用介质层加载的方法使表面等离子体激元(SPPs)在传输过程中获得较低的传输损耗。通过比较介质-金属-介质(IMI)和介质加载的波导,证明了此介质加载的方法可以有效地减小表面等离子体的损耗,获得更低的传播速度。然后,在硅介质和金属银中间加载一层二氧化硅来提高介质光栅中表面等离子体慢波传输的性能。通过时域有限差分法证明所提出的结构使得不同频率的入射波产生的SPPs 停留在不同高度的介质中,获得很小的传播速度,并且有很小的传输损耗和强的亚波长限制。此结构在光存贮和光通信方面有着很好的应用。
Abstract
The method of the dielectric loaded is presented to obtain low loss in propagation of the surface plasmon polaritons (SPPs). Comparing the conventional insulator-metal-insulator (IMI) waveguide and the waveguide with dielectric loaded, it is demonstrated that the method of dielectric loaded can reduce the loss in propagation and achieve smaller group velocity. A silica layer between a silver film and silicon layer is employed to improve the propagation performance of SPPs in the“trapped rainbow”system based on graded grating structure. Time domain finite difference simulation demonstrates that the improved structure is able to localize light of different frequencies at different positions and offers the advantage of supporting slow SPPs with a much lower propagation loss and deeper sub-wavelength confinement. The proposed structure has a wide range of applications in optical processing and optical communication.
参考文献

[1] William L Barnes, Alain Dereux, Thomas W Ebbesen. Surface plasmon sub- wavelength optics[J]. Nature, 2003, 424: 824-830.

[2] 王继成, 刘红娇, 蔡增艳, 等. 双缝波导结构表面等离子体可见光分束器设计[J]. 激光与光电子学进展, 2014, 51(10): 102301.

    Wang Jicheng, Liu Hongjiao, Cai Zengyan, et al.. Design of surface plasmon dichroic splitter with two metallic slits[J]. Laser & Optoelectronics Progress, 2014, 51(10): 102301.

[3] Wang Guoxi, Lu Hua, Liu Xueming, et al.. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Opt Express, 2011, 19(4): 3513-3518.

[4] Yun Binfeng, Hu Guohua, Cui Yiping. Resonant mode analysis of the nanoscale surface plasmon polariton waveguide filter with rectangle cavity[J]. Plasmonics, 2013, 8(2): 267-275.

[5] 罗昕, 邹喜华, 温坤华, 等. 双节MIM 结构表面等离子体窄带光学滤波器[J]. 光学学报, 2013, 33(11): 1123003.

    Luo Xin, Zou Xihua, Wen Kunhua, et al.. Narrow-band filter of surface plasmon based on dual-section metal-insulatormetal structure[J]. Acta Optica Sinica, 2013, 33(11): 1123003.

[6] 陈小龙, 罗云瀚, 徐梦云, 等. 基于侧边抛磨光纤表面等离子体共振的折射率和温度传感研究[J]. 光学学报, 2014, 34(2): 0206005.

    Chen Xiaolong, Luo Yunhan, Xu Mengyun, et al.. Refractive index and temperature sensing based on surface plasmon resonance fabricated on a side-polished fiber[J]. Acta Optica Sinica, 2014, 34(2): 0206005.

[7] L Chen, G P Wang, X Li, et al.. Broadband slow- light in graded- grating- loaded plasmonic waveguides at telecom frequencies[J]. Appl Phys B, 2011, 104(3): 653-657.

[8] Gan Qiaoqiang, Fu Zhan, Ding Yujie, et al.. Ultrawide- bandwidth slow- light system based on THz plasmonic graded metallic grating structures[J]. Phys Rev Lett, 2008, 100(25-27): 256803.

[9] L Wang, L L Wang, Y Zeng, et al.. Trapping of surface plasmon polaritons in a multiple- teeth- shaped waveguide at visible wavelengths[J]. Appl Phys B, 2011, 103(4): 883-887.

[10] Gan Qiaoqiang, Filbert J Bartoli. Graded metallic gratings for ultrawideband surface wave trapping at THz frequencies [J]. IEEE J Sel Top Quantum Electron, 2011, 17(1): 102-109.

[11] Xu Yun, Zhang Jing, Song Guofeng. Slow surface plasmons in plasmonic grating waveguide[J]. IEEE Photon Technol Lett, 2013, 25(1): 410-413.

[12] Zhang Jing, Cai Likang, Bai Wenli, et al.. Flat surface plasmon polariton bands in Bragg grating waveguide for slow light [J]. J Lightwave Technol, 2010, 28(14): 2030-2036.

[13] Li Chunlei, Qi Dawei, Xin Jiangbo, et al.. Metal-insulator-metal plasmonic waveguide for low-distortion slow light at telecom frequencies[J]. Journal of Modern Optics, 2014, 61(8): 627-630.

[14] Zeng Chao, Cui Yudong. Low- distortion plasmonic slow- light system at telecommunication regime[J]. Opt Commun, 2013, 294(5): 372-376.

[15] Zeng Chao, Cui Yudong. Rainbow trapping of surface plasmon polariton waves in metal-insulator-metal graded grating waveguide[J]. Opt Commun, 2013, 290(1): 188-191.

[16] Li Chunlei, Zhang Xueru, Wang Yuxiao, et al.. Precise control of group velocity by pulsewidth in a plasmonic superlattice [J]. IEEE Photon Technol Lett, 2011, 23(17): 1243-1245.

[17] Kang Zhiwen, Lin Weihua, Wang Guoping. Dual- channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices[J]. J Opt Soc Am B, 2009, 26(10): 1944-1948.

[18] Min Seok Jang, Harry Atwater. Plasmonic rainbow trapping structures for light localization and spectrum splitting[J]. Phys Rev Lett, 2011, 107: 207401.

[19] Gan Qiaoqiang, Gao Yongkang, Kyle Wagner, et al.. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings[J]. Advanced Materials, 2011, 108(13): 5169-5173.

[20] Hua Gao, Claire Gu, Zheng Zhiyuan, et al.. Transmission forbiddance and absorption enhancement in a sub-wavelength metallic cross-slit[J]. Opt Commun, 2014, 320(6): 49-55.

[21] Takasumi Tanabe, Masaya Notomi, Eiichi Kuramochi, et al.. Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities[J]. Opt Express, 2007, 15(12): 7826-7839.

[22] Shen Yun, Wang Guoping. Gain- assisted time delay of plasmons in coupled metal ring resonator waveguides[J]. Opt Express, 2007, 17(15): 12807-12812.

[23] Li Chunlei, Zhang Xueru, Wang Yuxiao, et al.. Slow surface plasmon polaritons with a large normalized delay bandwidth product in an ultracompact metal gap superlattice[J]. Opt Commun, 2012, 285(7): 1993-1996.

陈佳佳, 盛朋驰, 杨骏风, 陈明, 陈辉. 低损耗表面等离子体波导慢光传输的研究[J]. 激光与光电子学进展, 2015, 52(11): 112401. Chen Jiajia, Sheng Pengchi, Yang Junfeng, Chen Ming, Chen Hui. Study on Slow Light of Surface Plasmon Waveguide with Low Loss[J]. Laser & Optoelectronics Progress, 2015, 52(11): 112401.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!