发光学报, 2019, 40 (9): 1123, 网络出版: 2019-09-27   

用于碱金属蒸汽激光器泵浦的窄线宽780 nm半导体激光源

780 nm Diode Laser Source with Narrow Linewidth for Alkali Metal Vapor Laser Pumping
作者单位
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
780.0 nm窄线宽、高功率半导体激光器对于发展Rb碱金属蒸汽激光器具有重要意义。为获得好的泵浦效果, 泵浦光谱与碱金属蒸汽的吸收光谱需严格匹配, 必须压窄半导体激光输出线宽, 且稳定中心波长。反射式体布拉格光栅(RVBG)外腔反馈是目前实现窄光谱光源的主要方案之一。本文提出了快轴准直镜-光束变换器-慢轴准直镜-反射式体布拉格光栅(FAC-BTS-SAC-RVBG)的结构, 压缩入射到RVBG的激光发散角, 提高RVBG有效反馈率, 相对于常规的“FAC+SAC+RVBG”结构, 提升光谱锁定效果。基于“FAC+BTS+SAC+RVBG”结构, 研制出780 nm窄线宽激光器, 连续功率达到47.2 W, 通过对RVBG精确温控, 可将中心波长稳定在780.00 nm。采用单模光纤探测, 光谱宽度为0.064 nm(FWHM), 温漂系数为0.001 2 nm/℃, 电流漂移系数为0.001 3 nm/A, 可用于Rb碱金属蒸汽激光器泵浦。
Abstract
The 780.0 nm narrow linewidth and high power diode laser is of great significance for the development of Rb alkali metal vapor laser. In order to obtain good pumping effect, the absorption spectra of the pump spectrum and the alkali metal vapor must be strictly matched, the output line width of the diode laser must be narrowed, and the central wavelength must be stabilized. External cavity feedback of reflective volume Bragg grating(RVBG) is one of the main schemes to realize narrow spectrum light source at present. The structure of fast axis collimating mirror, beam convertor, slow axis collimating mirror, reflection type body Bragg grating(FAC-BTS-SAC-RVBG) is proposed. The laser divergence angle of incident to RVBG is compressed to improve the effective response rate of RVBG. Compared with the conventional “FAC +SAC+RVBG” structure, the spectral locking effect is improved. Based on the FAC-BTS-SAC-RVBG structure, a narrow linewidth laser at 780 nm was developed, with a continuous power of 50 W. By controlling RVBG temperature, the central wavelength could be stabilized at 780.00 nm. Using single mode optical fiber probe, spectral width is 0.064 nm(FWHM), temperature drift coefficient is 0.001 2 nm/℃, current drift coefficient is 0.001 3 nm/A. The structure can be used for Rb alkali metal vapor laser pump.
参考文献

[1] PODVYAZNYY A,VENUS G,SMIRNOV V,et al.. 250 W diode laser for low pressure Rb vapor pumping [C]. Proceedings of SPIE 7583,High-power Diode Laser Technology and Applications Ⅷ,San Francisco,California,United States, 2010:1-6.

[2] 孙胜明,范杰,徐莉,等. 锥形半导体激光器研究进展 [J]. 中国光学, 2019,12(1):48-58.

    SUN S M,FAN J,XU L,et al.. Progress of tapered semiconductor diode lasers [J]. Chin. Opt., 2019,12(1):48-58. (in Chinese)

[3] 仇伯仓,胡海,汪卫敏,等. 12 W高功率高可靠性915 nm半导体激光器设计与制作 [J]. 中国光学, 2018,11(4):590-603.

    QIU B C,HU H,WANG W M,et al.. Design and fabrication of 12 W high power and high reliability 915 nm semiconductor lasers [J]. Chin. Opt., 2018,11(4):590-603. (in Chinese)

[4] 海一娜,邹永刚,田锟,等. 水平腔面发射半导体激光器研究进展 [J]. 中国光学, 2017,10(2):194-206.

    HAI Y N,ZOU Y G,TIAN K,et al.. Research progress of horizontal cavity surface emitting semiconductor lasers [J]. Chin. Opt., 2017,10(2):194-206. (in Chinese)

[5] 田锟,邹永刚,马晓辉,等. 面发射分布反馈半导体激光器 [J]. 中国光学, 2016,9(1):51-64.

    TIAN K,ZOU Y G,MA X H,et al.. Surface emitting distributed feedback semiconductor lasers [J]. Chin. Opt., 2016,9(1):51-64. (in Chinese)

[6] VOLODIN B L,DOLGY S V,MELNIK E D,et al.. Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings [J]. Opt. Lett., 2004,29(16):1891-1893.

[7] KISSEL H,KHLER B,BIESENBACH J. High-power diode laser pumps for alkali lasers (DPALs) [C]. Proceedings of SPIE 8241,High-power Diode Laser Technology and Applications X,San Francisco,California,United States, 2012:1-10.

[8] PANDEY R,MERCHEN D,STAPLETON D,et al.. Narrow-line,tunable,high-power diode laser pump for DPAL applications [C]. Proceedings of SPIE 8733,Laser Technology for Defense and Security IX,Baltimore,Maryland,United States, 2013.

[9] 李志永,谭荣清,徐程,等. 用于铷蒸气激光泵浦的窄线宽阵列半导体激光器 [J]. 强激光与粒子束, 2013,25(4):875-878.

    LIZ Y,TAN R Q,XU C,et al.. Laser doide array with narrow linewidth for rubidium vapor laser pumping [J]. High Power Laser Part. Beams, 2013,25(4):875-878. (in Chinese)

[10] KOENNING T,IRWIN D,STAPLETON D,et al.. Narrow line diode laser stacks for DPAL pumping [C]. Proceedings of SPIE 8962, High Energy/Average Power Lasers and Intense Beam Applications Ⅶ,San Francisco,California,United States, 2014:1-7.

[11] KOENNING T,MCCORMICK D,IRWIN D,et al.. DPAL pump system exceeding 3 kW at 766 nm and 30 GHz bandwidth [C]. Proceedings of SPIE 9733,High-Power Diode Laser Technology and Applications ⅩⅣ,San Francisco,California,United States, 2016.

[12] NEGOITA V C,LI Y F,BARNOWSKI T,et al.. Wavelength stabilization of high power laser systems using volume holographic gratings [C]. Proceedings of SPIE 8965, High-power Diode Laser Technology and Applications Ⅶ,San Francisco,California,United States, 2014:1-11.

[13] HAAS M,RAUCH S,NAGEL S,et al.. Beam quality deterioration in dense wavelength beam-combined broad-area diode lasers [J]. IEEE J. Quantum Electron., 2017,53(3):2600111-1-11.

[14] 王立军,彭航宇,张俊. 大功率半导体激光合束进展 [J]. 中国光学, 2015,8(4):517-534.

    WANG L J,PENG H Y,ZHANG J. Advance on high power diode laser coupling [J]. Chin. Opt., 2015,8(4):517-534. (in Chinese)

田景玉, 张俊, 彭航宇, 雷宇鑫, 王立军. 用于碱金属蒸汽激光器泵浦的窄线宽780 nm半导体激光源[J]. 发光学报, 2019, 40(9): 1123. TIAN Jing-yu, ZHANG Jun, PENG Hang-yu, LEI Yu-xin, WANG Li-jun. 780 nm Diode Laser Source with Narrow Linewidth for Alkali Metal Vapor Laser Pumping[J]. Chinese Journal of Luminescence, 2019, 40(9): 1123.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!