Photonics Research, 2018, 6 (4): 04000244, Published Online: Aug. 1, 2018  

Emerging photoluminescence from defective vanadium diselenide nanosheets Download: 921次

Author Affiliations
1 NANOTAM-Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
2 Department of Electrical and Electronics Engineering, Bilkent University, 06800 Ankara, Turkey
3 UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
4 Department of Physics, Bilkent University, 06800 Ankara, Turkey
5 e-mail: amir@ee.bilkent.edu.tr
Copy Citation Text

Amir Ghobadi, Turkan Gamze Ulusoy Ghobadi, Ali Kemal Okyay, Ekmel Ozbay. Emerging photoluminescence from defective vanadium diselenide nanosheets[J]. Photonics Research, 2018, 6(4): 04000244.

References

[1] A. K. Geim. Graphene: status and prospects. Science, 2009, 324: 1530-1534.

[2] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 2010, 22: 3906-3924.

[3] M. J. Allen, V. C. Tung, R. B. Kaner. Honeycomb carbon: a study of graphene. Chem. Rev., 2010, 110: 132-145.

[4] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7: 699-712.

[5] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5: 263-275.

[6] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, M. C. Hersam. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8: 1102-1120.

[7] Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan. Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1: 16042.

[8] C. Luo, C. Wang, X. Wu, J. Zhang, J. Chu. In situ transmission electron microscopy characterization and manipulation of two-dimensional layered materials beyond graphene. Small, 2017, 13: 1604259.

[9] M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdo, T. Mueller. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett., 2014, 14: 4785-4791.

[10] M. Bernardi, M. Palummo, C. Grossman, R. Scienti. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett., 2013, 13: 3664-3670.

[11] N. Balis, E. Stratakis, E. Kymakis. Graphene and transition metal dichalcogenide nanosheets as charge transport layers for solution processed solar cells. Mater. Today, 2016, 19: 580-594.

[12] O. Lopez-sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol., 2013, 8: 497-501.

[13] D. Kang, M. Kim, J. Shim, J. Jeon, H. Park, W. Jung, H. Yu, C. Pang, S. Lee, J. Park. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater., 2015, 25: 4219-4227.

[14] D. B. Velusamy, R. H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S. H. Kassani, G. Song, S. M. Cho, S. H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, C. Park. Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nat. Commun., 2015, 6: 8063.

[15] F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, K. S. Novoselov. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater., 2015, 14: 301-306.

[16] O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta, I. Morral, A. Radenovic, A. Kis. Light generation and harvesting in a van der Waals heterostructure. ACS Nano, 2014, 8: 3042-3048.

[17] D. M. Andoshe, J. M. Jeon, S. Y. Kim, H. W. Jang. Two-dimensional transition metal dichalcogenide nanomaterials for solar water splitting. Electron. Mater. Lett., 2015, 11: 323-335.

[18] M. Pumera, Z. Sofer, A. Ambrosi. Layered transition metal dichalcogenides for electrochemical energy generation and storage. J. Mater. Chem. A, 2014, 2: 8981-8987.

[19] Y. Hou, X. Zhuang, X. Feng. Recent advances in earth-abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods, 2017, 1: 1700090.

[20] W. Peng, Y. Li, F. Zhang, G. Zhang, X. Fan. Roles of two-dimensional transition metal dichalcogenides as cocatalysts in photocatalytic hydrogen evolution and environmental remediation. Ind. Eng. Chem. Res., 2017, 56: 4611-4626.

[21] Y. Wan, H. Zhang, K. Zhang, Y. Wang, B. Sheng, X. Wang, L. Dai. Large-scale synthesis and systematic photoluminescence properties of monolayer MoS2 on fused silica. ACS Appl. Mater. Interfaces, 2016, 8: 18570-18576.

[22] K. Mak, C. Lee, J. Hone, J. Shan, T. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105: 136805.

[23] Z. He, X. Wang, W. Xu, Y. Zhou, Y. Sheng, Y. Rong, J. M. Smith, J. H. Warner. Revealing defect-state photoluminescence in monolayer WS2 by cryogenic laser processing. ACS Nano, 2016, 10: 5847-5855.

[24] H. R. Gutierrez, N. Perea-Lopez, A. L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V. H. Crespi, H. Terrones, M. Terrones. Extraordinary room-temperature photoluminescence in WS2 triangular monolayers. Nano Lett., 2013, 13: 3447-3454.

[25] Z. Wu, W. Zhao, J. Jiang, T. Zheng, Y. You, J. Lu, Z. Ni. Defect activated photoluminescence in WSe2 monolayer. J. Phys. Chem. C, 2017, 121: 12294-12299.

[26] C. Ruppert, O. B. Aslan, T. F. Heinz. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14: 6231-6236.

[27] I. G. Lezama, A. Arora, A. Ubaldini, C. Barreteau, E. Giannini, M. Potemski, A. F. Morpurgo. Indirect-to-direct band-gap crossover in few-layer MoTe2. Nano Lett., 2015, 15: 2336-2342.

[28] G. Froehlicher, E. Lorchat, S. Berciaud. Direct versus indirect band gap emission and exciton-exciton annihilation in atomically thin molybdenum ditelluride (MoTe2). Phys. Rev. B, 2016, 94: 085429.

[29] H. V. Han, A. Y. Lu, L. S. Lu, J. K. Huang, H. Li, C. L. Hsu, Y. C. Lin, M. H. Chiu, K. Suenaga, C. W. Chu, H. C. Kuo, W. H. Chang, L. J. Li, Y. Shi. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano, 2016, 10: 1454-1461.

[30] N. Peimyoo, W. Yang, J. Shang, X. Shen, Y. Wang, T. Yu. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano, 2014, 8: 11320-11329.

[31] S. Mouri, Y. Miyauchi, K. Matsuda. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett., 2013, 13: 5944-5948.

[32] B. Mukherjee, N. Kaushik, R. P. N. Tripathi, A. M. Joseph, P. K. Mohapatra, S. Dhar, B. P. Singh, G. V. P. Kumar, E. Simsek, S. Lodha. Exciton emission intensity modulation of monolayer MoS2 via Au plasmon coupling. Sci. Rep., 2017, 7: 41175.

[33] H. Li, X. Duan, X. Wu, X. Zhuang, H. Zhou, Q. Zhang, X. Zhu, W. Hu, P. Ren, P. Guo, L. Ma, X. Fan, X. Wang, J. Xu, A. Pan, X. Duan. Growth of alloy MoS2xSe2(1-x)nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc., 2014, 136: 3756-3759.

[34] M. D. Tran, J. H. Kim, Y. H. Lee. Tailoring photoluminescence of monolayer transition metal dichalcogenides. Curr. Appl. Phys., 2016, 16: 1159-1174.

[35] S. Susarla, A. Kutana, J. A. Hachtel, V. Kochat, A. Apte, R. Vajtai, J. C. Idrobo, B. I. Yakobson, C. S. Tiwary, P. M. Ajayan. Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv. Mater., 2017, 29: 1702457.

[36] Z. Wang, Z. Dong, Y. Gu, Y. H. Chang, L. Zhang, L. J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C. W. Qiu, A. T. S. Wee. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat. Commun., 2016, 7: 11283.

[37] E. Palacios, S. Park, S. Butun, L. Lauhon, K. Aydin. Enhanced radiative emission from monolayer MoS2 films using a single plasmonic dimer nanoantenna. Appl. Phys. Lett., 2017, 111: 031101.

[38] S. Wu, S. Buckley, A. M. Jones, J. S. Ross, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, F. Hatami, J. Vučković, A. Majumdar, X. Xu. Control of two-dimensional excitonic light emission via photonic crystal. 2D Mater., 2014, 1: 011001.

[39] X. Gan, Y. Gao, K. F. Mak, X. Yao, R.-J. Shiue, A. van der Zande, M. Trusheim, F. Hatami, T. F. Heinz, J. Hone, D. Englund. Controlling the spontaneous emission rate of monolayer MoS2 in a photonic crystal nanocavity. Appl. Phys. Lett., 2013, 103: 181119.

[40] J. Lee, J. Huang, B. G. Sumpter, M. Yoon. Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures. 2D Mater., 2017, 4: 021016.

[41] Z. Lin, A. Mccreary, U. Wurstbauer, B. Miller, J. S. Ponraj, Z. Xu, Z. Lin, B. R. Carvalho, E. Kahn, R. Lv, R. Rao, H. Terrones. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater., 2016, 3: 022002.

[42] P. K. Chow, R. B. Jacobs-Gedrim, J. Gao, T. Lu, B. Yu, H. Terrones. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 2015, 9: 1520-1527.

[43] V. Carozo, Y. Wang, K. Fujisawa, B. R. Carvalho, A. Mccreary, S. Feng, Z. Lin, C. Zhou, N. Perea-López, A. L. Elías, B. Kabius, V. H. Crespi, M. Terrones. Optical identification of sulfur vacancies: bound excitons at the edges of monolayer tungsten disulfide. Sci. Adv., 2017, 3: e1602813.

[44] A. Veamatahau, B. Jiang, T. Seifert, S. Makuta, K. Latham, M. Kanehara, T. Teranishi, Y. Tachibana. Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys. Chem. Chem. Phys., 2015, 17: 2850-2858.

[45] H. Y. Jeong, S. Y. Lee, T. H. Ly, G. H. Han, H. Kim, H. Nam, Z. Jiong, B. G. Shin, S. J. Yun, J. Kim, U. J. Kim, S. Hwang, Y. H. Lee. Visualizing point defects in transition-metal dichalcogenides using optical microscopy. ACS Nano, 2016, 10: 770-777.

[46] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, Z. Ni. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8: 5738-5745.

[47] Z. Zhang, J. Niu, P. Yang, Y. Gong, Q. Ji, J. Shi, Q. Fang, S. Jiang, H. Li, X. Zhou, L. Gu, X. Wu, Y. Zhang. Van der Waals epitaxial growth of 2D metallic vanadium diselenide single crystals and their extra-high electrical conductivity. Adv. Mater., 2017, 29: 1702359.

[48] H. Zhang, L. Sun, Y. Dai, C. Tong, X. Han. Tunable electronic and magnetic properties from structure phase transition of layered vanadium diselenide. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 574-578.

[49] Z. I. Popov, N. S. Mikhaleva, M. A. Visotin, A. A. Kuzubov, S. Entani, H. Naramoto, S. Sakai, P. B. Sorokin, P. V. Avramov. The electronic structure and spin states of 2D graphene/VX2 (X = S, Se) heterostructures. Phys. Chem. Chem. Phys., 2016, 18: 33047-33052.

[50] Á. Pásztor, A. Scarfato, C. Barreteau, E. Giannini, C. Renner. Dimensional crossover of the charge density wave transition in thin exfoliated VSe2. 2D Mater., 2017, 4: 041005.

[51] W. Tong, S. Gong, X. Wan, C. Duan. Concepts of ferrovalley material and anomalous valley Hall effect. Nat. Commun., 2016, 7: 13612.

[52] H.-R. Fuh, B. Yan, S.-C. Wu, C. Felser, C.-R. Chang. Metal-insulator transition and the anomalous Hall effect in the layered magnetic materials VS2 and VSe2. New J. Phys., 2016, 18: 113038.

[53] K. Xu, P. Chen, X. Li, C. Wu, Y. Guo, J. Zhao, X. Wu. Ultrathin nanosheets of vanadium diselenide: a metallic two-dimensional material with ferromagnetic charge-density-wave behavior. Angew. Chem., 2013, 52: 10477-10481.

[54] M. Yan, X. Pan, P. Wang, F. Chen, L. He, G. Jiang, J. Wang, J. Z. Liu, X. Xu, X. Liao, J. Yang, L. Mai. Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett., 2017, 17: 4109-4115.

[55] W. Zhao, B. Dong, Z. Guo, G. Su, R. Gao, W. Wang, L. Cao. Colloidal synthesis of VSe2 single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction. Chem. Commun., 2016, 52: 9228-9231.

[56] X. Chia, A. Ambrosi, P. Lazar, Z. Sofer, M. Pumera. Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J. Mater. Chem. A, 2016, 4: 14241-14253.

[57] Y. Wang, Z. Sofer, J. Luxa, M. Pumera. Lithium exfoliated vanadium dichalcogenides (VS2, VSe2, VTe2) exhibit dramatically different properties from their bulk counterparts. Adv. Mater. Interfaces, 2016, 3: 1600433.

[58] T. G. Ulusoy Ghobadi, B. Patil, F. Karadas, A. K. Okyay, E. Yilmaz. Catalytic properties of vanadium diselenide: a comprehensive study on its electrocatalytic performance in alkaline, neutral, and acidic media. ACS Omega, 2017, 2: 8319-8329.

[59] S. He, H. Lin, L. Qin, Z. Mao, H. He, Y. Li, Q. Li. Synthesis, stability, and intrinsic photocatalytic properties of vanadium diselenide. J. Mater. Chem. A, 2017, 5: 2163-2171.

[60] X. Fan, P. Xu, D. Zhou, Y. Sun, Y. C. Li, M. A. T. Nguyen, M. Terrones, T. E. Mallouk. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett., 2015, 15: 5956-5960.

[61] T. P. Nguyen, W. Sohn, J. H. Oh, H. W. Jang, S. Y. Kim. Size-dependent properties of two-dimensional MoS2 and WS2. J. Phys. Chem. C, 2016, 120: 10078-10085.

[62] V. Štengl, J. Henych. Strongly luminescent monolayered MoS2 prepared by effective ultrasound exfoliation. Nanoscale, 2013, 5: 3387-3394.

[63] M. M. Bernal, L. Álvarez, E. Giovanelli, A. Arnáiz, L. Ruiz-González, S. Casado, D. Granados, A. M. Pizarro, A. Castellanos-Gomez, E. M. Pérez. Luminescent transition metal dichalcogenide nanosheets through one-step liquid phase exfoliation. 2D Mater., 2016, 3: 035014.

[64] C. Y. Luan, S. Xie, C. Ma, S. Wang, Y. Kong, M. Xu. Elucidation of luminescent mechanisms of size-controllable MoSe2 quantum dots. Appl. Phys. Lett., 2017, 111: 073105.

[65] K. S. Nikonov, M. N. Brekhovskikh, A. V. Egorysheva, T. K. Menshchikova, V. A. Fedorov. Chemical vapor transport growth of vanadium (IV) selenide and vanadium (IV) telluride single crystals. Inorg. Mater., 2017, 53: 1126-1130.

[66] A. Gustinetti, G. Campagnoli, H. Mutka, P. Molinie, R. H. Friend, D. Jerome, A. Nader, A. Leblanc. The characterisation of VSe2: a study of the thermal expansion. J. Phys. C, 1981, 14: L609-L615.

[67] E. Spiecker, A. K. Schmid, A. M. Minor, U. Dahmen, S. Hollensteiner, W. Ja. Self-assembled nanofold network formation on layered crystal surfaces during metal intercalation. Phys. Rev. Lett., 2006, 96: 086401.

[68] N. D. Boscher, C. S. Blackman, C. J. Carmalt, I. P. Parkin, A. G. Prieto. Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci., 2007, 253: 6041-6046.

[69] T. Oztas, H. S. Sen, E. Durgun, B. Ortaç. Synthesis of colloidal 2D/3D MoS2 nanostructures by pulsed laser ablation in an organic liquid environment. J. Phys. Chem. C, 2014, 118: 30120-30126.

[70] H. G. Baldoví, M. Latorre-Sánchez, I. Esteve-Adell, A. Khan, A. M. Asiri, S. A. Kosa, H. Garcia. Generation of MoS2 quantum dots by laser ablation of MoS2 particles in suspension and their photocatalytic activity for H2 generation. J. Nanopart. Res., 2016, 18: 240.

[71] L. Zhou, H. Zhang, H. Bao, G. Liu, Y. Li, W. Cai. Onion-structured spherical MoS2 nanoparticles induced by laser ablation in water and liquid droplets’ radial solidification/oriented growth mechanism. J. Phys. Chem. C, 2017, 121: 23233-23239.

[72] S. R. M. Santiago, T. N. Lin, C. T. Yuan, J. L. Shen, H. Y. Huang, C. A. J. Lin. Origin of tunable photoluminescence from graphene quantum dots synthesized via pulsed laser ablation. Phys. Chem. Chem. Phys., 2016, 18: 22599-22605.

[73] T. G. Ulusoy Ghobadi, A. Ghobadi, T. Okyay, K. Topalli, A. K. Okyay. Controlling luminescent silicon nanoparticle emission produced by nanosecond pulsed laser ablation: role of interface defect states and crystallinity phase. RSC Adv., 2016, 6: 112520.

[74] C. Guo, J. Pan, H. Li, T. Lin, P. Liu, C. Song, D. Wang, G. Mu, X. Lai, H. Zhang, W. Zhou, M. Chen, F. Huang. Observation of superconductivity in 1T′-MoS2 nanosheets. J. Mater. Chem. C, 2017, 5: 10855-10860.

[75] S. Jiménez Sandoval, D. Yang, R. Frindt, J. Irwin. Raman study and lattice dynamics of single molecular layers of MoS2. Phys. Rev. B, 1991, 44: 3955-3962.

[76] C. Lin, A. Posadas, T. Hadamek, A. A. Demkov. Final-state effect on X-ray photoelectron spectrum of nominally d1 and n-doped d0 transition-metal oxides. Phys. Rev. B, 2015, 92: 035110.

[77] D. Sethi, N. Jada, A. Tiwari, S. Ramasamy, T. Dash, S. Pandey. Photocatalytic destruction of Escherichia coli in water by V2O5/TiO2. J. Photochem. Photobiol. B, 2015, 144: 68-74.

[78] A. Ghobadi, H. I. Yavuz, T. G. Ulusoy, K. C. Icli, M. Ozenbas, A. K. Okyay. Enhanced performance of nanowire-based all-TiO2 solar cells using subnanometer-thick atomic layer deposited ZnO embedded layer. Electrochim. Acta, 2015, 157: 23-30.

[79] T. G. Ulusoy, A. Ghobadi, A. K. Okyay. Surface engineered angstrom thick ZnO-sheathed TiO2 nanowires as photoanodes for performance enhanced dye-sensitized solar cells. J. Mater. Chem. A, 2014, 2: 16867-16876.

[80] E. New, I. Hancox, L. A. Rochford, M. Walker, A. Dearden, C. F. Mcconville, T. S. Jones. Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe. J. Mater. Chem. A, 2014, 2: 19201-19207.

[81] M. A. Morris, M. A. Morris, N. Petkov, J. D. Holmes. Resist-substrate interface tailoring for generating high-density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. J. Vac. Sci. Technol. B, 2012, 30: 041602.

Amir Ghobadi, Turkan Gamze Ulusoy Ghobadi, Ali Kemal Okyay, Ekmel Ozbay. Emerging photoluminescence from defective vanadium diselenide nanosheets[J]. Photonics Research, 2018, 6(4): 04000244.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!