光学学报, 2017, 37 (5): 0523002, 网络出版: 2017-05-05   

795 nm两组份偏振纠缠光场的实验制备

Experimental Preparation of Bipartite Polarization Entangled Optical Fields at 795 nm
作者单位
山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
引用该论文

吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军. 795 nm两组份偏振纠缠光场的实验制备[J]. 光学学报, 2017, 37(5): 0523002.

Wu Liang, Liu Yanhong, Deng Ruijie, Yan Zhihui, Jia Xiaojun. Experimental Preparation of Bipartite Polarization Entangled Optical Fields at 795 nm[J]. Acta Optica Sinica, 2017, 37(5): 0523002.

参考文献

[1] Braunstein S L, Loock P van. Quantum information with continuous variables[J]. Rev Mod Phys, 2005, 77(2): 513-577.

[2] Pan J W, Chen Z B, Lu C Y, et al. Multi-photon entanglement and interferometry[J]. Rev Mod Phys, 2012, 84(2): 777-838.

[3] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution[J]. Rev Mod Phys, 2009, 81(3): 1301-1349.

[4] Shor P W, Siam J. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. Computing, 1997, 26(9): 1484-1509.

[5] Ou Z Y, Pereira S F, Kimble H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Phys Rev Lett, 1992, 68(25): 3663-3666.

[6] 张 敏, 周瑶瑶, 李 芳, 等. 利用锲角KTP晶体实现低阈值非简并光学参量放大器的运转[J]. 光学学报, 2014, 34(3): 0327001.

    Zhang Min, Zhou Yaoyao, Li Fang, et al. Realization of low threshold operation of non-degenerate optical parameteric amplifier with wedged KTP crystal[J]. Acta Optica Sinica, 2014, 34(3): 0327001.

[7] 马文煜, 贾晓军. 非简并光学参量放大器线宽对纠缠增强的影响[J]. 量子光学学报, 2012, 18(2): 143-146.

    Ma Wenyu, Jia Xiaojun. Influence of cavity bandwidth of a NOPA on entanglement enhancement[J]. Acta Sinica Quantum Optica, 2012, 18(2): 143-146.

[8] Furusawa A, Srensen J L, Braunstein S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389): 706-709.

[9] Su X L, Hao S H, Deng X W, et al. Gate sequence for continuous variable one-way quantum computation[J]. Nat Commun, 2013, 4: 2828.

[10] Kimble H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030.

[11] Tanimura T, Akamatsu D, Yokoi Y, et al. Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4[J]. Opt Lett, 2006, 31(15): 2344-2346.

[12] Hétet G, Glckl O, Pilypas K A, et al. Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line[J]. J Phys B, 2007, 40(1): 221-226.

[13] Predojevic' A, Zhai Z, Caballero J M, et al. Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator[J]. Phys Rev A. 2008, 78(6): 063820.

[14] Han Y S, Wen X, He J, et al. Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm[J]. 2016, 24(3): 2350-2359.

[15] Gong Y X, Zou X B, Niu X L, et al. Generation of arbitrary four-photon polarization-entangled decoherence-free states[J]. Phys Rev A, 2008, 77(4): 042317.

[16] Korolkova N, Leuchs G, Loudon R, et al. Polarization squeezing and continuous variable polarization entanglement[J]. Phys Rev A, 2002, 65(5): 052306.

[17] Heersink J, Gaber T, Lorenz S, et al. Polarization squeezing of intense pulses with a fiber-optic Sagnac interferometer[J]. Phys Rev A, 2003, 68(1): 013815.

[18]

    Glckl O, Heersink J, Korolkova N, et al. A pulsed source of continuous variable polarization entanglement[J]. J Opt B: Quantum Semiclass Opt, 2003, 5: S492-S496.

[19] Josse V, Dantan A, Vernac L, et al. Polarization squeezing with cold atoms[J]. Phys Rev Lett, 2003, 91(10): 103601.

[20] Josse V, Dantan A, Bramati A, et al. Continuous variable entanglement using cold atoms[J]. Phys Rev Lett, 2004, 92(12): 123601.

[21] Bowen W P, Treps N, Schnabel R, et al. Experimental demonstration of continuous variable polarization entanglement[J]. Phys Rev Lett, 2002, 89(25): 253601.

[22] Yan Z H, Jia X J. Direct production of three-color polarization entanglement for continuous variable[J]. J Opt Soc Am B, 2015, 32(10): 2139-2145.

[23] Wu L, Liu Y H, Deng R J, et al. Deterministic generation of bright polarization squeezed state of light resonant with the rubidium D1 absorption line[J]. J Opt Soc Am B, 2016, 33(11): 2296-2301.

[24] Wu L, Yan Z H, Liu Y H, et al. Experimental generation of tripartite polarization entangled states of bright optical beams[J]. Appl Phys Lett, 2016, 108(16): 161102.

[25] 温 馨, 韩亚帅, 何 军, 等. PPKTP晶体半整体谐振腔倍频的397.5 nm紫外激光输出[J]. 光学学报, 2016, 36(4): 0414001.

    Wen Xin, Han Yashuai, He Jun, et al. Generation of 397.5 nm ultra-violet laser by frequency doubling in a PPKTP-crystal semi-monolithic resonant cavity[J]. Acta Optica Sinica, 2016, 36(4): 0414001.

[26] 李 强, 邓晓玮, 张 强, 等. 实验制备纯的双模压缩态[J]. 光学学报, 2016, 36(4): 0427001.

    Li Qiang, Deng Xiaowei, Zhang Qiang, et al. Experimental preparation of a pure two-mode squeezed state[J]. Acta Optica Sinica, 2016, 36(4): 0427001.

吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军. 795 nm两组份偏振纠缠光场的实验制备[J]. 光学学报, 2017, 37(5): 0523002. Wu Liang, Liu Yanhong, Deng Ruijie, Yan Zhihui, Jia Xiaojun. Experimental Preparation of Bipartite Polarization Entangled Optical Fields at 795 nm[J]. Acta Optica Sinica, 2017, 37(5): 0523002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!