光学学报, 2017, 37 (5): 0523002, 网络出版: 2017-05-05   

795 nm两组份偏振纠缠光场的实验制备

Experimental Preparation of Bipartite Polarization Entangled Optical Fields at 795 nm
作者单位
山西大学光电研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
摘要
理论分析并实验制备了795 nm两组份偏振纠缠光场。当分析频率为1.8~6.5 MHz时, 归一化的斯托克斯算符的量子关联噪声小于1, 得到了两组份偏振纠缠态; 当分析频率大于3 MHz时, 关联噪声达到0.5左右。该非经典光源可应用于未来的量子存储, 并且可能用于实现量子通道和量子节点之间、两个量子节点之间的纠缠以及量子态的传输。
Abstract
Bipartite polarization entangled optical fields are theoretically analyzed and experimentally prepared. When the analysis frequency is 1.8-6.5 MHz, the normalized quantum correlation noise of Stokes operator is below 1, where the bipartite polarization entangled state is obtained. When the analysis frequency is above 3 MHz, the correlation noise reaches 0.5. This non-classical light source can be applied in quantum memory in future and to realizing the entanglement and quantum state transfer between the quantum channel and quantum node or between two quantum nodes.
参考文献

[1] Braunstein S L, Loock P van. Quantum information with continuous variables[J]. Rev Mod Phys, 2005, 77(2): 513-577.

[2] Pan J W, Chen Z B, Lu C Y, et al. Multi-photon entanglement and interferometry[J]. Rev Mod Phys, 2012, 84(2): 777-838.

[3] Scarani V, Bechmann-Pasquinucci H, Cerf N J, et al. The security of practical quantum key distribution[J]. Rev Mod Phys, 2009, 81(3): 1301-1349.

[4] Shor P W, Siam J. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J]. Computing, 1997, 26(9): 1484-1509.

[5] Ou Z Y, Pereira S F, Kimble H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Phys Rev Lett, 1992, 68(25): 3663-3666.

[6] 张 敏, 周瑶瑶, 李 芳, 等. 利用锲角KTP晶体实现低阈值非简并光学参量放大器的运转[J]. 光学学报, 2014, 34(3): 0327001.

    Zhang Min, Zhou Yaoyao, Li Fang, et al. Realization of low threshold operation of non-degenerate optical parameteric amplifier with wedged KTP crystal[J]. Acta Optica Sinica, 2014, 34(3): 0327001.

[7] 马文煜, 贾晓军. 非简并光学参量放大器线宽对纠缠增强的影响[J]. 量子光学学报, 2012, 18(2): 143-146.

    Ma Wenyu, Jia Xiaojun. Influence of cavity bandwidth of a NOPA on entanglement enhancement[J]. Acta Sinica Quantum Optica, 2012, 18(2): 143-146.

[8] Furusawa A, Srensen J L, Braunstein S L, et al. Unconditional quantum teleportation[J]. Science, 1998, 282(5389): 706-709.

[9] Su X L, Hao S H, Deng X W, et al. Gate sequence for continuous variable one-way quantum computation[J]. Nat Commun, 2013, 4: 2828.

[10] Kimble H J. The quantum internet[J]. Nature, 2008, 453(7198): 1023-1030.

[11] Tanimura T, Akamatsu D, Yokoi Y, et al. Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4[J]. Opt Lett, 2006, 31(15): 2344-2346.

[12] Hétet G, Glckl O, Pilypas K A, et al. Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line[J]. J Phys B, 2007, 40(1): 221-226.

[13] Predojevic' A, Zhai Z, Caballero J M, et al. Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator[J]. Phys Rev A. 2008, 78(6): 063820.

[14] Han Y S, Wen X, He J, et al. Improvement of vacuum squeezing resonant on the rubidium D1 line at 795 nm[J]. 2016, 24(3): 2350-2359.

[15] Gong Y X, Zou X B, Niu X L, et al. Generation of arbitrary four-photon polarization-entangled decoherence-free states[J]. Phys Rev A, 2008, 77(4): 042317.

[16] Korolkova N, Leuchs G, Loudon R, et al. Polarization squeezing and continuous variable polarization entanglement[J]. Phys Rev A, 2002, 65(5): 052306.

[17] Heersink J, Gaber T, Lorenz S, et al. Polarization squeezing of intense pulses with a fiber-optic Sagnac interferometer[J]. Phys Rev A, 2003, 68(1): 013815.

[18]

    Glckl O, Heersink J, Korolkova N, et al. A pulsed source of continuous variable polarization entanglement[J]. J Opt B: Quantum Semiclass Opt, 2003, 5: S492-S496.

[19] Josse V, Dantan A, Vernac L, et al. Polarization squeezing with cold atoms[J]. Phys Rev Lett, 2003, 91(10): 103601.

[20] Josse V, Dantan A, Bramati A, et al. Continuous variable entanglement using cold atoms[J]. Phys Rev Lett, 2004, 92(12): 123601.

[21] Bowen W P, Treps N, Schnabel R, et al. Experimental demonstration of continuous variable polarization entanglement[J]. Phys Rev Lett, 2002, 89(25): 253601.

[22] Yan Z H, Jia X J. Direct production of three-color polarization entanglement for continuous variable[J]. J Opt Soc Am B, 2015, 32(10): 2139-2145.

[23] Wu L, Liu Y H, Deng R J, et al. Deterministic generation of bright polarization squeezed state of light resonant with the rubidium D1 absorption line[J]. J Opt Soc Am B, 2016, 33(11): 2296-2301.

[24] Wu L, Yan Z H, Liu Y H, et al. Experimental generation of tripartite polarization entangled states of bright optical beams[J]. Appl Phys Lett, 2016, 108(16): 161102.

[25] 温 馨, 韩亚帅, 何 军, 等. PPKTP晶体半整体谐振腔倍频的397.5 nm紫外激光输出[J]. 光学学报, 2016, 36(4): 0414001.

    Wen Xin, Han Yashuai, He Jun, et al. Generation of 397.5 nm ultra-violet laser by frequency doubling in a PPKTP-crystal semi-monolithic resonant cavity[J]. Acta Optica Sinica, 2016, 36(4): 0414001.

[26] 李 强, 邓晓玮, 张 强, 等. 实验制备纯的双模压缩态[J]. 光学学报, 2016, 36(4): 0427001.

    Li Qiang, Deng Xiaowei, Zhang Qiang, et al. Experimental preparation of a pure two-mode squeezed state[J]. Acta Optica Sinica, 2016, 36(4): 0427001.

吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军. 795 nm两组份偏振纠缠光场的实验制备[J]. 光学学报, 2017, 37(5): 0523002. Wu Liang, Liu Yanhong, Deng Ruijie, Yan Zhihui, Jia Xiaojun. Experimental Preparation of Bipartite Polarization Entangled Optical Fields at 795 nm[J]. Acta Optica Sinica, 2017, 37(5): 0523002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!