光子学报, 2016, 45 (10): 1024002, 网络出版: 2016-11-14   

缝隙八木纳米天线设计及宽波段吸收特性

Design of Slot Yagi-Uda Nanoantennas and Their Broadband Absorption Properties
作者单位
华东交通大学 信息工程学院,南昌 330013
摘要
针对传统光伏电池能量收集易受环境与光照时间限制的问题,本文设计了一种用于太阳能收集的缝隙八木纳米天线单元及阵列.采用时域有限差分法分析缝隙间距对纳米天线远场方向性和近场分布的影响,并研究缝隙八木纳米天线阵列的吸收特性及不同缝隙间距对阵列天线吸收率的影响.研究远场方向性发现,当缝隙间距增加到一定距离时,天线方向图出现多个副瓣并产生新的辐射模式;通过对近场分析表明,新辐射模式的产生来源于高阶模式的局域表面等离激元.天线阵列吸收率的仿真结果表明:在400~1 500 nm波段,随着缝隙间距的增加,缝隙八木纳米天线阵列吸收率呈上升趋势,当缝隙间距等于80 nm时,在400~660 nm、760~1 300 nm两个波段内吸收率较高,吸收峰值最大可以达到98%;以吸收率大于50%为基准,当缝隙间距等于80 nm时,其吸收波段最宽.
Abstract
Aim at the problem that the energy collection of traditional photovoltaic cells is susceptible to environment and illumination time constraints, a slot Yagi-Uda nanoantenna unit and array was proposed for solar energy harvest. By adopting the finite difference time domain method, the influence of gap spacing on the nano antenna far field directivity and the near field distribution was analyzed. The influence of the absorption characteristics of slot Yagi-Uda nanoantenna array and the different slot spacing on the array antenna absorption rate was studied. The study of far field directivity shows that, when the slot spacing increases to a certain distance, the antenna far-filed pattern appears multi-sidelobe and a new radiation pattern. The analysis of the near field thows that, the new radiation pattern is derived from the high order mode of localized surface plasmon. The simulation results of the antenna array absorption rate show that, in the waveband range from 400nm to 1500nm, with the increase of slot spacing, the absorption rate shows a trend of rising. When the slot spacing is equal to 80nm, the antenna absorption rate is higher in the band range from 400nm to 660nm and the range from760nm to 1300nm, the absorption peak value can reach 98%. The absorption rate exceeds 50% as a benchmark, when the slot spacing is equal to 80nm, the absorption band is widest.
参考文献

[1] SHIGETA R, SASAKI T, QUAN D M, et al. Ambient RF energy harvesting sensor device with capacitor-leakage-aware duty cycle control[J]. IEEE Sensors Journal, 2013, 13(8): 2973-2983.

[2] HENRY C H. Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells[J]. Journal of Applied Physics, 1980, 51(8): 4494-4500.

[3] 赵炜, 赵晓鹏. 纳米粒子形貌与表面等离子体激元关系[J]. 光子学报, 2011, 40(4): 556-560.

    ZHAO W, ZHAO X P. Relationship of surface plasmon polaritons and nanoparticles morphology[J]. Acta Photonica Sinica, 2011, 40(4): 556-560.

[4] ZHU J, LI J J, ZHAO J W. Distance-dependent fluorescence quenching efficiency of gold nanodisk effect of aspect ratio dependent plasmonic absorption[J]. Plasmonics, 2011, 111(28): 1-7.

[5] 蒋双凤,孔凡敏,李康等. 光偶极子天线的远场方向性研究[J]. 物理学报,2011,60(4): 371-375.

    JIANG Shuang-feng, KONG fan-min, LI Kang, et al. Study of far-field directivity of optical dipole antenna[J]. Acta Physica Sinica, 2011, 60(4): 371-375.

[6] SHEN S, FORSBERG E, HAN Z, et al. Strong resonant coupling of surface plasmon polaritons to radiation modes through a thin metal slab with dielectric gratings[J]. Optics Express, 2016, 24(2): 225-230.

[7] EIZNER E, AVAYU O, DITCOVSKI R, et al. Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons[J]. Nano Letters, 2015, 15(9): 6215-21.

[8] OLIVIA N, MARTIJN W, MORTENSEN N A. Plasmon modes of a single silver nanorod: an eletron energy loss study[J]. Optics Express, 2011, 19(16): 15371-15379.

[9] 李宏光. 银纳米圆盘光天线的远场方向性研究[J]. 光子学报,2012, 41(8): 977-981.

    LI Hong-guang. Far-field characteristics of silver nanodisk optical antenna[J]. Acta Photonica Sinica, 2012, 41(8): 977-981.

[10] ZARRABI F B. Sub wavelength plasmonic nano-antenna with H and U shape for enhancement of multi resonance[J]. Optik International Journal for Light and Electron Optics, 2016, 127(10): 4490-4494.

[11] MIROSHNICHENKO A E, MAKSYMOV I S, DAVOYAN A R, et al. An arrayed nanoantenna for broadband light emission and detection[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2011, 5(9): 347–349.

[12] LIN N, WEN F, ZHAO Y, et al. Individual nanoantennas loaded with three-dimensional optical nanocircuits[J]. Nano Letters, 2013, 13(1): 142-147.

[13] HUSSEIN M, FAHMY AREED N F, HAMEED M F O, et al. Design of flower-shaped dipole nano-antenna for energy harvesting[J]. Iet Optoelectronics, 2014, 8(8): 167-173.

[14] KOTTER D K, NOVACK S D, SLAFER W D, et al. Theory and manufacturing processes of solar nanoantenna electromagnetic collectors[J]. Journal of Solar Energy Engineering, 2010, 132(1): 937-937.

[15] ZHANG J, ZHANG W, ZHU X, et al. Resonant slot nanoantennas for surface plasmon radiation in optical frequency range[J]. Applied Physics Letters, 2012, 100(24): 241115.

[16] JOHNSON P B. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379.

[17] NOVOTNY L, HULST N V. Antennas for light[J]. Nature Photonics, 2011, 5(2): 83-90.

[18] TAMIINIAU T H, STEFANI F D, HULST N F V. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna[J]. Optics Express, 2008, 16(14): 10858-10866.

[19] 邓琥,陈琦,何晓阳,等.三路太赫兹光导天线的功率合成技术[J].发光学报,2014,35(12):1500-1505.

    DENG Hu, CHEN Qi, HE Xiao-yang, et al. Power combining technology in three-way terahertz photoconductive antenna[J]. Chinese Journal of Luminescence, 2014,35(12):1500-1505.

[20] 王珩. 光学纳米天线设计及吸收增强特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

朱路, 王杨, 刘媛媛, 黄志群, 慈白山. 缝隙八木纳米天线设计及宽波段吸收特性[J]. 光子学报, 2016, 45(10): 1024002. ZHU Lu, WANG Yang, LIU Yuan-yuan, HUANG Zhi-qun, CI Bai-shan. Design of Slot Yagi-Uda Nanoantennas and Their Broadband Absorption Properties[J]. ACTA PHOTONICA SINICA, 2016, 45(10): 1024002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!