光子学报, 2018, 47 (4): 0401003, 网络出版: 2018-03-15   

全天时喇曼激光雷达探测大气水汽的技术实现及分光系统设计

Design of Polychromator and Technical Implementation of Daytime Raman Lidar for Atmospheric Water Vapor Measurement
作者单位
西安理工大学 机械与精密仪器工程学院, 西安 710048
摘要
为实现大气水汽的全天时测量, 选用Nd∶YAG脉冲激光器的四倍频输出266.0 nm作为激励光源, 设计日盲紫外域喇曼激光雷达系统.由于低层大气污染造成的臭氧污染, 通过增加大气氧气的振动喇曼散射信号测量通道, 实时反演近地表臭氧浓度的分布, 为修正激光雷达方程中的臭氧吸收提供解决方案.同时, 选用高光谱分辨率光栅和窄带宽激光反射镜设计光栅光谱仪作为激光雷达的分光系统.仿真计算表明, 入射角为10°时, 设计的光栅光谱仪可有效分离并提取氧气、氮气和水汽的振动喇曼散射回波信号, 日盲紫外喇曼激光雷达系统可实现全天时状态下2 km高度范围内大气水汽的廓线探测.
Abstract
In order to achieve the water vapor measurement in day and night time, the quadruple frequency of Nd∶YAG pulsed laser is selected as the transmitter in the construction of solar-blind Raman lidar. Due to the Ozone pollution in the lower atmosphere, besides the detection of the vibrational Raman signals of nitrogen and water vapor, exmaination of the vibrational Raman signal of oxygen is necessary for retrieving the Ozone concentraiton from the ground to the height of interest, which can be used as the solution for correcting the Raman lidar equation. Meanwhile, the high-resolution grating and tunable laser mirrors are selected to construct the grating spectormeter for the separation of the vibrational Raman signals of oxygen, nitrogen and water vapor. The simulation results show that the vibrational Raman siganls of oxygen, nitorgen and water vapor can be extracted finely when the incident angle of the grating spectrometer is set to be 10 deg, and the solar blind Raman lidar can achieve the water vapor measurement up to the height of 2 km.
参考文献

[1] 谢晨波, 周军, 岳古明,等. 新型车载式喇曼激光雷达测量对流层水汽[J]. 光学学报, 2006, 26(9): 1281-1286.

    XIE Chen-bo, ZHOU Jun, YUE Gu-ming, et al. New mobile Raman lidar for measurement of tropospheric water vapor[J]. Acta Optiac Sinica, 2006, 26(9): 1281-1286.

[2] SHINE K P, SINHA A. Sensititivity of the Earth′s climate to height dependent changes in the water vapwe mixing ration[J]. Nature, 1991, 354(6352): 382-384.

[3] 王玉峰, 高飞, 华灯鑫,等. 对流层高度大气温度、湿度和气溶胶的喇曼激光雷达系统[J]. 光学学报, 2015, 35(03): 378-387.

    WANG Yu-feng, GAO, Fei, HUA Deng-xin, et al. Raman Lidar for atmospheric temperature, humidity and aerosols up to troposphere height[J]. Acta Optiac Sinica, 2015, 35(03): 378-387.

[4] BOSENBERG J. Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology[J]. Applied Optics, 1998, 37: 3845-3860.

[5] GOLDSMITH J E M, FOREST H B, SCOTT E B, et al. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aero sols[J] . Applied Optics, 1998, 37(21): 4979-4990.

[6] 葛烨, 舒嵘, 胡以华,等. 大气水汽探测地基差分吸收激光雷达系统设计与性能仿真[J]. 物理学报, 2014, 63(20): 203-210.

    GE Ye, SHU Rong, HU Yi-hua, et al. System design and performance simulation of ground-based differential absorption lidar for water-vapor measurements[J]. Acta Physica Sinica, 2014, 63(20): 203-210.

[7] MATTIS I, ANSMANN A, ALTHAUSEN D, et al. Relative-humidity profiling in the troposphere with a Raman lidar[J]. Applied Optics, 2002, 41: 6451-6462.

[8] DIONISI D, KECKHUT P, COURCOUX Y, et al. Water vapor observations up to the lower stratosphere through the Raman lidar during the Mado lidar calibration campaign[J]. Atmospheric Measurement Techniques, 2015, 8(3): 1425-1445.

[9] 李陶, 戚福第, 周军, 等. 大气中水汽混合比的Raman激光雷达探测[J]. 大气科学, 2000, 24(06): 843-854.

    LI Tao, QI Fu-di, ZHOU Jun, et al. Raman lidar system for measurement of water vapor mixing ratio in the atmosphere.[J]. Chinese Journal of Atmospheric Sciences, 2000, 24(06): 843-854.

[10] 汪少林, 曹开法, 陶宗明, 等. 水汽紫外喇曼激光雷达分光系统研究[J]. 光电子.激光, 2010, 21(08): 1171-1175.

    WANG Shao-lin, CAO Kai-fa, TAO Zong-ming, et al. Study for an optical splitting system of water vapor ultraviolet Raman lidar[J]. Journal of Optoelectronics Laser, 2010, 21(08): 1171-1175.

[11] 汪少林, 谢军, 曹开法, 等 . 喇曼差分法探测大气中的臭氧[J]. 中国激光,2008, 35(5): 739-743.

    WANG Shao-lin, XIE Jun, CAO Kai-fa, et al. Monitoring O3 in atmosphere by Raman-differential absorption method[J]. Chinese Journal of Lasers, 2008, 35 (5): 739-743.

[12] WHITEMEN D N, MELFI S H, FERRARE R A. Raman lidar sysrem for the measurement of water vapor and aerosols in the Earth′s atmosphere[J]. Applied. Optical, 1992, 31(16): 3068-3082.

[13] LI G, BEI N, CAO J, et al. Widespread and persistent ozone pollution in Eastern China[J]. Atmospheric Chemistry & Physics, 2016, 17(4): 1-39.

[14] HAMMANN E, BEHRENDT A, MOUNIER F L, et al. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment[J]. Atmospheric Chemistry & Physics, 2015, 15(5): 2867-2881.

[15] HUA Deng-xin, KOBAYASHI T. Ultraviolet Rayleigh-Mie lidar by use of a multicavity Fabry-Perot filter for accurate temperature profiling of the troposphere[J]. Applied Optics, 2005, 44(30): 6474-6478.

[16] GAO Fei, SONG Xiao-quan, HUA Deng-xin, et al. Ultraviolet Raman lidar for high-accuracy profiling of aerosol extinction coefficient [J]. Chinese Optical Letters, 2009, 7(2): 95-97.

高飞, 雷宁, 黄波, 朱青松, 石冬晨, 汪丽, 王玉峰, 闫庆, 刘晶晶, 华灯鑫. 全天时喇曼激光雷达探测大气水汽的技术实现及分光系统设计[J]. 光子学报, 2018, 47(4): 0401003. GAO Fei, LEI Ning, HUANG Bo, ZHU Qing-song, SHI Dong-chen, WANG Li, WANG Yu-feng, YAN Qing, LIU Jing-jing, HUA Deng-xin. Design of Polychromator and Technical Implementation of Daytime Raman Lidar for Atmospheric Water Vapor Measurement[J]. ACTA PHOTONICA SINICA, 2018, 47(4): 0401003.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!