发光学报, 2014, 35 (7): 767, 网络出版: 2014-07-22  

氧化石墨烯/硒化锌纳米光电材料的制备及其蓝光发射特性

Preparation and Characteristics of Reduced Graphene Oxide-zinc Selenide Nano Optoelectronic Materials
作者单位
吉林大学 通讯工程学院, 吉林 长春 130012
摘要
采用一种简单有效的原位水热合成方法, 使用石墨烯氧化物(GO)作为反应物和晶体生长基底成功制备出了还原氧化石墨烯/硒化锌(r-GO/ZnSe)纳米复合材料。采用X射线粉末衍射(XRD)、透射电子显微镜(TEM)、高分辨透射电镜(HRTEM)以及红外-可见光谱(FT-IR)等方法对r-GO/ZnSe纳米复合材料进行了检测。结果表明, 平均粒径在30 nm的立方闪锌矿晶体结构的ZnSe粒子均匀分散在氧化石墨烯片层上, 构成纳米复合结构。 UV-Vis光谱显示, 纳米复合材料的光学吸收的起始波长在445 nm附近。PL光谱显示, 纳米复合材料在470 nm附近存在一个很强的发射峰。这种石墨烯基纳米复合材料在白光二极管领域中有重要的应用价值。
Abstract
Reduced graphene oxide-ZnSe (r-GO/ZnSe) nanocomposites were successfully synthesized by an easy hydrothermal method. This process used the graphene oxide nanosheets as dispersant and two-dimensional growth template for ZnSe, resulting in the in situ formation of ZnSe nanoparticles on graphene oxide nanosheets and subsequent reduction of graphene oxide to r-GO. The samples were characterized by XRD, TEM, and FT-IR. The results show that the cubic ZnSe nanoparticles with the mean size of 30 nm distribute on r-GO sheets to form compact composites. UV-Vis absorption spectra indicate that the absorption edge of r-GO/ZnSe is at about 445 nm. PL spectra show a strong emission peak at 470 nm excited by 430 nm. The obtained r-GO/ZnSe nanocomposites may play important role in white LED field.
参考文献

[1] Yeh C Y, Lu Z W, Froyen S, et al. Zinc-blende—Wurtzite polytypism in semiconductors [J]. Phys. Rev. B, 1992, 46(16):10086-10097.

[2] Wang J L, Yang C M, Zhi P. Seed-catalyzed heteroepitaxial growth and nonlinear optical properties of zinc selenide nanowires [J]. Mater, Chem., 2012, 22:10009-10014.

[3] Wang D, Li H Y, Jie W Q. Synthesis of ZnSe microspheres by chemical vapor deposition [J]. J. Synth. Cryst.(人工晶体学报), 2011, 40(3):584-588 (in Chinese).

[4] Zhao L J, Pang Q, Cai Y, et al. Vertically aligned zinc selenide nanoribbon arrays: Microstructure and field emission [J]. Phys. D: Appl. Phys., 2007, 40(12):3587-3591.

[5] Fang X S, Xiong S L, Zhai T Y, et al. High-performance blue/ultraviolet-light sensitive ZnSe-nanobelt photodetectors [J]. Adv. Mater., 2009, 21:5016-5021.

[6] Cao F, Shi W D, Zhao L J, et al. Hydrothermal synthesis and high photocatalytic activity of 3D wurtzite ZnSe hierarchical nanostructures [J]. J. Phys. Chem. C, 2008, 112:17095-17101.

[7] Wang X, Ma X L, Feng X, et al. Controlled synthesis and characterization of ZnSe and ZnS quantum dots [J]. Chin. J. Lumin.(发光学报), 2009, 30( 6):818-823 (in Chinese).

[8] Wang L, Cao L X, Liu W, et al. Synthesis and photoluminescent properties of ZnSe∶Cu /CdS core /shell quantum dots [J]. Chin. J. Lumin.(发光学报), 2013, 34(6):686-691 (in Chinese).

[9] Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition [J]. Nat. Mater., 2011, 10(6):424-428.

[10] Huang Y, Chen Y S. Functionalization of graphene and their application [J]. Sci. China Ser. B: Chem., 2009, 39(9):887-896.

[11] Fu X, Bei F, Wang X, et al. Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives [J]. Nanoscale, 2010, 2(8):1461-1466.

[12] Song H S, Yang C, Liu D B. Dielectric properties of graphene/epoxy composites [J]. J. Funct. Mater.(功能材料), 2012, 43(9):1185-1188 (in Chinese).

[13] Wu J L, Shen X P, Jiang L, et al. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites [J]. Appl. Surf. Sci., 2010, 256(9):2826-2830.

[14] Bao J, Shen Y, Hu G J, et al. Dielectric properties of graphene/epoxy composites [J]. J. Infrared Millim. Waves (红外与毫米波学报), 2008, 27(6):405-408 (in Chinese).

[15] Yang K, Wang M Q, Yao X. Preparation and physical properties of nano-ZnSe/SiO2 mesoporous composite for assembly aystem [J]. J. Electroceram., 2008, 21:741-744.

[16] Chen G Y, Zhang W X, Liang J C, et al. Hydrothermal synthesis, characterization and properties of single-crystal Sb2Se3 nanoribbons [J]. Rare Metal Mater. Eng.(稀有金属材料与工程), 2010, 39(1):1-4 (in Chinese).

[17] Wu R, Jiang N N, Li J, et al. Synthesis of ZnSe nanomaterials via solvothermal method [J]. J. Iong. Mater.(无机材料学报), 2013, 28(6):579-583 (in Chinese).

[18] Shi L, Xu Y M, Li Q. Controlled fabrication of ZnSe arrays of well-aligned nanorods, nanowires and nanobells with a facile template-free route [J]. J. Phys. Chem. C, 2009, 113:1795-1799.

[19] Philipse U, Xu T, Yang S, et al. Enhancement of band edge luminescence in ZnSe nanowires [J]. J. Appl. Phys., 2006, 100(8):084316-1-6.

董浩, 赵晓晖, 曲良东, 迟学芬. 氧化石墨烯/硒化锌纳米光电材料的制备及其蓝光发射特性[J]. 发光学报, 2014, 35(7): 767. DONG Hao, ZHAO Xiao-hui, QU Liang-dong, CHI Xue-fen. Preparation and Characteristics of Reduced Graphene Oxide-zinc Selenide Nano Optoelectronic Materials[J]. Chinese Journal of Luminescence, 2014, 35(7): 767.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!