中国激光, 2012, 39 (12): 1203007, 网络出版: 2012-11-09   

激光冲击处理对AZ31B镁合金焊接件抗应力腐蚀的影响

Effect of Laser Shock Processing on Resistance to Stress Corrosion Cracking of Tungsten Inert-Gas Welded AZ31B Magnesium Alloy
作者单位
1 江苏大学机械工程学院, 江苏 镇江 212013
2 常州轻工职业技术学院模具系, 江苏 常州 213164
摘要
为了研究激光冲击处理对镁合金焊接件应力腐蚀性能的影响,采用激光波长1064 nm,脉冲宽度15 ns,脉冲能量4 J,光斑直径3 mm的钕玻璃脉冲激光器,对AZ31B镁合金交流氩弧焊接件表面进行冲击处理。室温下采用三点加载的方式,在去离子水中对试样进行应力腐蚀实验。利用光学显微镜和透射电镜观测激光冲击试样微观结构,利用扫描电镜观测应力腐蚀断口。实验结果表明:根据优化的激光参数,能在试样表面制得纳米结构表层,样品表面纳米晶粒大小为35 nm左右;激光冲击处理改变了试样表面的应力状态,由残余拉应力60 MPa转变为残余压应力-125 MPa;激光冲击处理后自腐蚀电位增大88 mV,腐蚀电流减小了73.4%,从而降低试样腐蚀倾向;未激光冲击的试样在浸没了192 h后出现应力腐蚀开裂,而激光冲击的试样在浸没了10个月后未出现裂纹,这表明激光冲击处理能够提高AZ31B镁合金焊接件抗应力腐蚀的能力。
Abstract
In order to study the effect of laser shock processing (LSP) on the stress corrosion cracking (SCC) of welded magnesium alloy, tungsten inert-gas (TIG) welded AZ31B magnesium alloy sheets surface is processed using NdYAG laser with a wavelength of 1064 nm, a pulse width of 15 ns, a pulse energy of 4 J and a spot diameter of 3 mm. At room temperature, the SCC susceptibility of the weldment samples with and without laser treatment is assessed by three points loading method in deionized water. The microstructure of specimens by LSP and fracture surfaces are analyzed by optical microscopy (OM), transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The results show that a nanostructured surface layer can be produced on welded AZ31B Mg alloys by using optimized laser parameters and surface nano grain size is about 35 nm. The surface residual stress is converted from tensile stress (60 MPa) to compressive stress (-125 MPa). LSP can reduce the corrosion trend of the weldment samples because corrosion potential increases by 88 mV and corrosion current decreases by 73.4% as compared to the samples without LSP. SCC appeares on samples without laser treatment after 192 h of immersion, however, no cracks is observed on samples treated by laser after 10 months, which shows that LSP can obviously improve the resistance to stress corrosion cracking of TIG welded AZ31B magnesium alloy.
参考文献

[1] 刘道新. 材料的腐蚀与防护[M]. 西安: 西北工业大学出版社, 2005. 152~216

    Liu Daoxin. The Corrosion and Protection of Materials[M]. Xi′an: Northwestern Polytechnical University Press, 2005. 152~216

[2] 卫英慧, 许并社. 镁合金腐蚀防护的理论与实践[M]. 北京: 冶金工业出版社, 2006

    Wei Yinghui, Xu Bingshe. The Theory and Practice of Magnesium Aloy Corrosion Protection[M]. Beijing: Metallurgical Industry Press, 2006

[3] 束德林. 金属力学性能[M]. 北京: 机械工业出版社, 1999

    Shu Delin. Metal Mechanical Properties[M]. Beijing: Machine Industry Press, 1999

[4] Kaidong Xu, Aihua Wang, Yang Wang. Surface nanocrystallization mechanism of a rare earth magnesium alloy induced by HVOF supersonic microparticles bombarding[J]. Appl. Surf. Sci., 2009, 256(3): 619~626

[5] Yinghui Wei, Baosheng Liu, Lifeng Hou et al.. Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechanical attrition treatment[J]. Journal of Alloys and Compounds, 2008, 452(2): 336~342

[6] Y. K. Zhang, J. Z. Lu, X. D. Ren et al.. Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy[J]. Materials and Design, 2009, 30(5): 1697~1703

[7] S. A. Martinez, S. Sathish, M. P. Blodgett et al.. Effects of fretting fatigue on the residual stress of shot peened Ti-6Al-4V samples[J]. Mater. Sci. Engng. A, 2005, 399(1-2): 58~63

[8] K. Y. Luo, J. Z. Lu, Y. K. Zhang et al.. Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J]. Mater. Sci. Engng. A, 2011, 528(13-14): 4783~4788

[9] J. P. Chu, J. M. Rigsbee, G. Bana et al.. Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J]. Mater. Sci. Engng. A, 1999, 260(1-2): 260~268

[10] 张永康, 陈菊芳, 许仁军. AM50镁合金激光冲击强化实验研究[J]. 中国激光, 2008, 35(7): 1068~1072

    Zhang Yongkang, Chen Jufang, Xu Renjun. Experimental research of laser shock strengthening AM50 magnesium alloy[J]. Chinese J. Lasers, 2008, 35(7): 1068~1072

[11] 葛茂忠, 张永康, 项建云. AZ31B镁合金激光冲击强化及抗应力腐蚀研究[J]. 中国激光, 2010, 37(11): 2925~2930

    Ge Maozhong, Zhang Yongkang, Xiang Jianyun. Research on laser shock strengthening and stress corrosion cracking resistance of AZ31B magnesium alloy[J]. Chinese J. Lasers, 2010, 37(11): 2925~2930

[12] 黄舒, 周建忠, 蒋素琴 等. AZ31B镁合金激光喷丸后的形变强化及疲劳断口分析[J]. 中国激光, 2011, 38(8): 0803002

    Huan Shu, Zhou Jianzhong, Jiang Suqin et al.. Study on strain hardening and fatigue fracture of AZ31B magnesium alloy after laser shot peening[J]. Chinese J. Lasers, 2011, 38(8): 0803002

[13] 王国凡. 材料成形与失效[M]. 北京: 化学工业出版社, 2002

    Wang Guofan. Material Molding and Failure[M]. Beijing: Chemical Industry Press, 2002

葛茂忠, 项建云, 张永康. 激光冲击处理对AZ31B镁合金焊接件抗应力腐蚀的影响[J]. 中国激光, 2012, 39(12): 1203007. Ge Maozhong, Xiang Jianyun, Zhang Yongkang. Effect of Laser Shock Processing on Resistance to Stress Corrosion Cracking of Tungsten Inert-Gas Welded AZ31B Magnesium Alloy[J]. Chinese Journal of Lasers, 2012, 39(12): 1203007.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!