半导体光电, 2019, 40 (2): 200, 网络出版: 2019-05-05  

含正交矩形腔MIM波导电磁感应透明及慢光效应的数值研究

Numerical Study on The Coupling Resonance Effect of Orthogonal
作者单位
南京邮电大学 电子与光学工程学院, 微电子学院, 南京 210023
摘要
通过在金属电介质金属(MIM)波导单侧引入正交的双谐振腔结构, 得到了实现等离激元诱导透明效应的结构模型。采用有限元法计算得到了该结构的透射谱曲线。仿真结果显示, 波导系统的谐振波长随着正交双谐振腔有效谐振长度(Leff)的增加而红移, 且当正交矩形腔为对称的T形结构时, 会出现传输禁带。在此基础上讨论了当正交矩形腔为非对称结构时, 在传输禁带处产生类电磁诱导透明峰的物理条件, 以及该透射峰的变换规律。类电磁诱导效应可改变光的群速度, 从而产生慢光效应。研究结果表明, 含正交矩形腔MIM的波导结构可以得到0.086ps的最大光时延,为光路延时以及光数据存储提供了理论参考。Rectangular Cavity in MIM WaveguideFENG Kaiqiang, GUAN Jianfei
Abstract
By introducing an orthogonal double resonant cavity structure on one side of a MIM waveguide, a structural model for achieving plasmoninduced transparency effects was obtained. The transmission spectrum curve of the structure was calculated by the finite element method. Simulation results show that the resonant wavelength of the waveguide system is redshifted with the increase of the effective resonant length (Leff) of the orthogonal double resonator, and when the orthogonal rectangular cavity is a symmetrical Tshaped structure, the transmission forbidden band will appear. Based on this, the physical conditions for generating an electromagneticinduced transparent peak at the transmission band gap and the transformation law of the transmission peak are discussed when the orthogonal rectangular cavity is an asymmetrical structure. The electromagnetic induction effect can change the group velocity of light, resulting in a slow light effect. The research results show that the MIM waveguide structure with orthogonal rectangular cavity can obtain the maximum optical delay of 0.086ps.
参考文献

[1] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424: 824830.

[2] Lee T W, Gray S. Subwavelength light bending by metal slit structures[J]. Opt. Express, 2005, 13(24): 96529659.

[3] Kim D. Effect of the azimuthal orientation on the performance of gratingcoupled surfaceplasmon resonance biosensors[J]. Appl. Opt., 2005, 44(16): 32183223.

[4] Han Z, Liu L, Forsberg E. Ultracompact directional couplers and MachZehnder interferometers employing surface plasmon polaritons[J]. Opt. Commun., 2006, 259(2): 690695.

[5] Veronis G, Fan S. Bends and splitters in metaldielectricmetal subwavelength plasmonic waveguiders[J]. Appl. Phys. Lett., 2005, 87(13): 131102.

[6] Fleischauer M, Physik F, Kaiserslautern D, et al. Electromagnetically induced transparency: optics in coherent media[J]. Rev. of Modern Phys., 2005, 77(2): 633673.

[7] Chen J, Wang C, Zhang R, et al. Multiple plasmoninduced transparencies in coupledresonator system[J]. Opt. Lett., 2012, 37(24): 51335135.

[8] 杨韵茹, 关建飞. 基于金属电介质金属波导结构的等离子体滤波器的数值研究[J]. 物理学报, 2016, 65(5): 273279.

    Yang Yunru, Guan Jianfei. Numerical study of plasmonic filter based on metalinsulatormetal waveguide[J]. Acta Phys. Sinica, 2016, 65(5): 273279.

[9] 刘鹏华, 关建飞. 含矩形腔MIM波导耦合谐振效应的数值研究[J]. 光通信研究, 2018, 42(2): 5559.

    Liu Penghua, Guan Jianfei. Numerical study of coupling effect on metalinsulatormetal waveguide with rectangular resonators[J]. Study on Opt. Commun., 2018, 42(2): 5559.

[10] Wen K, Yan L, Pan W. Electromagnetically induced transparencylike transmission in a compact sidecoupled Tshaped resonator[J]. J. of Lightwave Technol., 2014, 32(9): 17011707.

[11] Galuza A I, Beznosov A B. Optical functions of the Drude model: transformation of the spectra over wide ranges of parameters[J]. Low Temp. Phys., 2001, 27: 216227.

[12] Yang Hui, Li Hongjian, Xu Xiuke, et al. Formation mechanism and modulation of electromagnetically induced transparencylike transmission in sidecoupled structures[J]. J. of Central South University, 2015, 22(6): 20202026.

[13] Economou E N. Surface plasmons in thin films[J]. Physical Review, 1969, 182(2): 539.

冯凯强, 关建飞. 含正交矩形腔MIM波导电磁感应透明及慢光效应的数值研究[J]. 半导体光电, 2019, 40(2): 200. FENG Kaiqiang, GUAN Jianfei. Numerical Study on The Coupling Resonance Effect of Orthogonal[J]. Semiconductor Optoelectronics, 2019, 40(2): 200.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!