光子学报, 2019, 48 (2): 0216002, 网络出版: 2019-03-23  

表面等离子激元双增强β-NaYF4∶Er3+上转换研究

Study on Co-enhancement of Upconversion of β-NaYF4∶Er3+ by Surface Plasmon
作者单位
福建师范大学 物理与能源学院 福建省量子调控与新能源重点实验室, 福州 350117
引用该论文

黄海, 林林, 黄莉莉, 冯卓宏, 郑标, 王哲哲, 郑志强. 表面等离子激元双增强β-NaYF4∶Er3+上转换研究[J]. 光子学报, 2019, 48(2): 0216002.

HUANG Hai, LIN Lin, HUANG Li-li, FENG Zhuo-hong, ZHENG Biao, WANG Zhe-zhe, ZHENG Zhi-qiang. Study on Co-enhancement of Upconversion of β-NaYF4∶Er3+ by Surface Plasmon[J]. ACTA PHOTONICA SINICA, 2019, 48(2): 0216002.

参考文献

[1] AUZEL F. Upconversion and anti-Stokes processes with f and d Ions in Solids[J]. Chemical Reviews, 2004, 104(1): 139-173.

[2] FENG Z H, LIN L, WANG Z Z, et al. Low temperature sensing behavior of upconversion luminescence in Er3+ /Yb3+ codoped PLZT transparent ceramic[J]. Optics Communications, 2017, 399: 40-44.

[3] YUAN C, CHEN G, LI L, et al. Simultaneous multiple wavelength upconversion in a core-shell nanoparticle for enhanced near infrared light harvesting in a dye-sensitized solar cell[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 18018-18025.

[4] WU M, CONGREVE D N, WILSON M W B, et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals[J]. Nature Photonics, 2015, 10(1): 31-34.

[5] ZHOU B, SHI B, JIN D, et al. Controlling upconversion nanocrystals for emerging applications[J]. Nature Nanotechnology, 2015, 10(11): 924-936.

[6] YUAN P, LEE Y H, GNANASAMMANDHAN M K, et al. Plasmon enhanced upconversion luminescence of NaYF4∶Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging[J]. Nanoscale, 2012, 4(16): 5132-5137.

[7] LIAO X, CHEN Y, QIN M, et al. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole[J]. Talanta, 2013, 117: 203-208.

[8] WU Y, SHEN X, DAI S, et al. Silver nanoparticles enhanced upconversion luminescence in Er3+/Yb3+ codoped bismuth-germanate glasses[J]. The Journal of Physical Chemistry C, 2011, 115(50): 25040-25045.

[9] CHEN H, MING T, ZHAO L, et al. Plasmon-molecule interactions[J]. Nano Today, 2010, 5(5): 494-505.

[10] CHEN X, XU W, ZHANG L, et al. Large upconversion enhancement in the “islands” Au-Ag Alloy/NaYF4∶Yb3+, Tm3+/Er3+ composite films, and fingerprint identification[J]. Advanced Functional Materials, 2015, 25(34): 5462-5471.

[11] 徐森元, 郑标, 林林, 等. 银纳米立方颗粒表面等离子激元增强β-NaYF4∶Er3+, Yb3+上转换的研究[J]. 人工晶体学报, 2016, 45(3): 649-654.

    XU Sen-yuan, ZHENG Biao, LIN Lin, et al. Study on surface plasmon-enhanced upconversion in β-NaYF4∶Er3+, Yb3+ combined with Ag nanocubes[J]. Journal of Synthetic Crystals, 2016, 45(3): 649-654.

[12] CHEN X, ZHOU D, XU W, et al. Fabrication of Au-Ag nanocage@NaYF4@NaYF4∶Yb,Er core-shell hybrid and its tunable upconversion enhancement[J]. Scientific Reports, 2017, 7: 41079.

[13] WANG Y L, MOHAMMADI ESTAKHRI N, JOHNSON A, et al. Tailoring plasmonic enhanced upconversion in single NaYF4∶Yb3+/Er3+ nanocrystals[J]. Scientific Reports, 2015, 5: 10196.

[14] YIN Z, ZHOU D, XU W, et al. Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals[J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11667-11674.

[15] YI M, ZHANG D, WEN X, et al. Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film[J]. Plasmonics, 2011, 6(2): 213-217.

[16] ZHU W J, CHEN D Q, LEI L, et al. An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles[J]. Nanoscale, 2014, 6(18): 10500-10504.

[17] SKRABALAK S E, AU L, LI X, et al. Facile synthesis of Ag nanocubes and Au nanocages[J]. Nature Protocols, 2007, 2(9): 2182-2190.

[18] YE X, ZHENG C, CHEN J, et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods[J]. Nano Letters, 2013, 13(2): 765-771.

[19] ZHENG B, LIN L, HUANG L L, et al. Enhancement of three-photon near-infrared quantum cutting in β-NaYF4∶Er3+ nanoparticles by Ag nanocubes[J]. Materials Research Bulletin, 2018, 101: 199-204.

[20] ZHAN Q, ZHANG X, ZHAO Y, et al. Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod[J]. Laser & Photonics Reviews, 2015, 9(5): 479-487.

[21] SHAO B, YANG Z, LI J, et al. Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption[J]. Optical Materials Express, 2017, 7(4): 1188-1197.

[22] ABADEER N S, BRENNAN M R, WILSONW L, et al. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods[J]. ACS Nano, 2014, 8(8): 8392-8406.

[23] ZHENG B, LIN L, FENG Z H, et al. Enhanced quantum cutting luminescence by Au nanorods through improving radiative transition rate[J]. Optics Communications, 2017, 402: 336-339.

黄海, 林林, 黄莉莉, 冯卓宏, 郑标, 王哲哲, 郑志强. 表面等离子激元双增强β-NaYF4∶Er3+上转换研究[J]. 光子学报, 2019, 48(2): 0216002. HUANG Hai, LIN Lin, HUANG Li-li, FENG Zhuo-hong, ZHENG Biao, WANG Zhe-zhe, ZHENG Zhi-qiang. Study on Co-enhancement of Upconversion of β-NaYF4∶Er3+ by Surface Plasmon[J]. ACTA PHOTONICA SINICA, 2019, 48(2): 0216002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!