光子学报, 2019, 48 (2): 0216002, 网络出版: 2019-03-23  

表面等离子激元双增强β-NaYF4∶Er3+上转换研究

Study on Co-enhancement of Upconversion of β-NaYF4∶Er3+ by Surface Plasmon
作者单位
福建师范大学 物理与能源学院 福建省量子调控与新能源重点实验室, 福州 350117
摘要
用共沉淀法制备了β-NaYF4∶Er3+纳米颗粒.通过化学还原法、晶种生长法分别制备银纳米立方颗粒及金纳米棒, 并将其掺杂到β-NaYF4∶2%Er3+纳米颗粒中形成复合体系, 利用表面等离子激元增强效应分别实现β-NaYF4∶Er3+上转换发光的激发和发射增强.当银纳米立方颗粒掺杂量为60 μL时, 上转换发光强度整体增强4.0倍; 当金纳米棒掺杂量为60 μL时, 上转换发光强度整体增强7.8倍.在此基础上, 将两种贵金属纳米颗粒同时掺杂到β-NaYF4∶Er3+纳米颗粒材料中, 实现了该材料上转换发光激发和发射双增强, 上转换发光强度增强了16.0倍.
Abstract
β-NaYF4∶Er3+ upconversion nanoparticles were prepared by using coprecipitation method. The Ag nanocubes prepared by chemical reduction method and the Au nanorods prepared by seed-mediated growth method were doped into β-NaYF4∶2%Er3+ nanoparticles to form nano-composites, respectively. Therefore the enhancements of upconversion luminescence on β-NaYF4∶Er3+ NPs were achieved through surface plasmon resonance. The enhancement was up to 4.0 times with 60 μL Ag nanocubes doped, while the enhancement was up to 7.8 times with 60 μL Au nanorods doped. Codoping Ag nanocubes and Au nanorods into β-NaYF4∶2%Er3+ nanoparticles, great enhancement of upconversion luminescence reaching 16.0 times was obtained via co-enhancement of excitation and emission.
参考文献

[1] AUZEL F. Upconversion and anti-Stokes processes with f and d Ions in Solids[J]. Chemical Reviews, 2004, 104(1): 139-173.

[2] FENG Z H, LIN L, WANG Z Z, et al. Low temperature sensing behavior of upconversion luminescence in Er3+ /Yb3+ codoped PLZT transparent ceramic[J]. Optics Communications, 2017, 399: 40-44.

[3] YUAN C, CHEN G, LI L, et al. Simultaneous multiple wavelength upconversion in a core-shell nanoparticle for enhanced near infrared light harvesting in a dye-sensitized solar cell[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 18018-18025.

[4] WU M, CONGREVE D N, WILSON M W B, et al. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals[J]. Nature Photonics, 2015, 10(1): 31-34.

[5] ZHOU B, SHI B, JIN D, et al. Controlling upconversion nanocrystals for emerging applications[J]. Nature Nanotechnology, 2015, 10(11): 924-936.

[6] YUAN P, LEE Y H, GNANASAMMANDHAN M K, et al. Plasmon enhanced upconversion luminescence of NaYF4∶Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging[J]. Nanoscale, 2012, 4(16): 5132-5137.

[7] LIAO X, CHEN Y, QIN M, et al. Au-Ag-Au double shell nanoparticles-based localized surface plasmon resonance and surface-enhanced Raman scattering biosensor for sensitive detection of 2-mercapto-1-methylimidazole[J]. Talanta, 2013, 117: 203-208.

[8] WU Y, SHEN X, DAI S, et al. Silver nanoparticles enhanced upconversion luminescence in Er3+/Yb3+ codoped bismuth-germanate glasses[J]. The Journal of Physical Chemistry C, 2011, 115(50): 25040-25045.

[9] CHEN H, MING T, ZHAO L, et al. Plasmon-molecule interactions[J]. Nano Today, 2010, 5(5): 494-505.

[10] CHEN X, XU W, ZHANG L, et al. Large upconversion enhancement in the “islands” Au-Ag Alloy/NaYF4∶Yb3+, Tm3+/Er3+ composite films, and fingerprint identification[J]. Advanced Functional Materials, 2015, 25(34): 5462-5471.

[11] 徐森元, 郑标, 林林, 等. 银纳米立方颗粒表面等离子激元增强β-NaYF4∶Er3+, Yb3+上转换的研究[J]. 人工晶体学报, 2016, 45(3): 649-654.

    XU Sen-yuan, ZHENG Biao, LIN Lin, et al. Study on surface plasmon-enhanced upconversion in β-NaYF4∶Er3+, Yb3+ combined with Ag nanocubes[J]. Journal of Synthetic Crystals, 2016, 45(3): 649-654.

[12] CHEN X, ZHOU D, XU W, et al. Fabrication of Au-Ag nanocage@NaYF4@NaYF4∶Yb,Er core-shell hybrid and its tunable upconversion enhancement[J]. Scientific Reports, 2017, 7: 41079.

[13] WANG Y L, MOHAMMADI ESTAKHRI N, JOHNSON A, et al. Tailoring plasmonic enhanced upconversion in single NaYF4∶Yb3+/Er3+ nanocrystals[J]. Scientific Reports, 2015, 5: 10196.

[14] YIN Z, ZHOU D, XU W, et al. Plasmon-Enhanced Upconversion Luminescence on Vertically Aligned Gold Nanorod Monolayer Supercrystals[J]. ACS Applied Materials & Interfaces, 2016, 8(18): 11667-11674.

[15] YI M, ZHANG D, WEN X, et al. Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film[J]. Plasmonics, 2011, 6(2): 213-217.

[16] ZHU W J, CHEN D Q, LEI L, et al. An active-core/active-shell structure with enhanced quantum-cutting luminescence in Pr-Yb co-doped monodisperse nanoparticles[J]. Nanoscale, 2014, 6(18): 10500-10504.

[17] SKRABALAK S E, AU L, LI X, et al. Facile synthesis of Ag nanocubes and Au nanocages[J]. Nature Protocols, 2007, 2(9): 2182-2190.

[18] YE X, ZHENG C, CHEN J, et al. Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods[J]. Nano Letters, 2013, 13(2): 765-771.

[19] ZHENG B, LIN L, HUANG L L, et al. Enhancement of three-photon near-infrared quantum cutting in β-NaYF4∶Er3+ nanoparticles by Ag nanocubes[J]. Materials Research Bulletin, 2018, 101: 199-204.

[20] ZHAN Q, ZHANG X, ZHAO Y, et al. Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod[J]. Laser & Photonics Reviews, 2015, 9(5): 479-487.

[21] SHAO B, YANG Z, LI J, et al. Upconversion emission enhancement by porous silver films with ultra-broad plasmon absorption[J]. Optical Materials Express, 2017, 7(4): 1188-1197.

[22] ABADEER N S, BRENNAN M R, WILSONW L, et al. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods[J]. ACS Nano, 2014, 8(8): 8392-8406.

[23] ZHENG B, LIN L, FENG Z H, et al. Enhanced quantum cutting luminescence by Au nanorods through improving radiative transition rate[J]. Optics Communications, 2017, 402: 336-339.

黄海, 林林, 黄莉莉, 冯卓宏, 郑标, 王哲哲, 郑志强. 表面等离子激元双增强β-NaYF4∶Er3+上转换研究[J]. 光子学报, 2019, 48(2): 0216002. HUANG Hai, LIN Lin, HUANG Li-li, FENG Zhuo-hong, ZHENG Biao, WANG Zhe-zhe, ZHENG Zhi-qiang. Study on Co-enhancement of Upconversion of β-NaYF4∶Er3+ by Surface Plasmon[J]. ACTA PHOTONICA SINICA, 2019, 48(2): 0216002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!