作者单位
摘要
1 山东理工大学电气与电子工程学院,山东 淄博,255049
2 澳谱特科技(上海)有限公司,上海,201109
利用退偏振动态光散射法测量棒状纳米颗粒尺寸时,计算过程中通常使用指数拟合算法,但该算法受初始值的影响较大,选取的初值不同拟合结果也不同。为解决该问题,提出利用Tikhonov正则化算法对退偏振动态光散射实验获得的垂直偏振和水平偏振自相关函数进行反演,从而得到平移和旋转衰减线宽,再计算得出平移扩散系数和旋转扩散系数,进而拟合得到纳米棒的长度和直径。搭建了退偏振动态光散射实验装置,对三种金纳米棒样品进行了退偏振动态光散射测量。实验结果表明,经过修正去掉吸附层后,金纳米棒的长度和直径测量值与透射电子显微镜(TEM)测量值相比,其偏差在8%以内,这表明修正后的测量结果与TEM的测量结果一致性较好。
退偏振动态光散射 金纳米棒 平移扩散系数 旋转扩散系数 多分散性 
光学学报
2024, 44(4): 0412002
李星童 1陈昱 1,2马强 1琚志平 1[ ... ]武愕 1,2,3,*
作者单位
摘要
1 华东师范大学 精密光谱科学与技术国家重点实验室 上海 200241
2 重庆市精密光谱重点实验室 华东师范大学重庆研究院 重庆 401120
3 山西大学 极端光学协同创新中心 山西 太原 030006
等离激元金属纳米结构中的Fano共振,由于其在超灵敏传感、超材料、光开关和非线性光学器件等方面的潜在应用而引起了广泛的关注。但在单颗粒尺度下单个金属纳米二聚体结构的Fano共振的实验研究仍然很少。本研究基于单颗粒光谱技术从实验上探讨了二聚体结构产生的Fano共振现象。利用种子生长法制备了等离激元共振峰分别在1 060 nm和700 nm的一长一短金纳米棒,通过L-半胱氨酸分子的静电吸附自组装构建首尾相连的金纳米棒二聚体结构,在暗场显微系统中表征了金纳米棒二聚体耦合前后的散射光谱。结果表明,短金纳米棒的明偶极模式与长金纳米棒的暗四极模式间的相消干涉在660 nm处产生了明显的Fano共振谷,同时基于有限差分时域(FDTD)方法的理论模拟散射光谱与实验结果能够较好地符合。这种自组装金纳米棒二聚体在等离激元传感和探测等方面具有广阔的应用前景。
Fano共振 二聚体 金纳米棒 散射 fano resonance dimer gold nanorods scattering 
量子光学学报
2023, 29(2): 020801
张喜豪 1,2张启明 1,2,*
作者单位
摘要
1 上海理工大学 光子芯片研究院,上海 200093
2 上海理工大学 光电信息与计算机工程学院,上海 200093
显微成像技术受限于光学成像系统的衍射极限,无法分辨亚波长尺度的结构。通过饱和散射抑制成像技术已经实现了单个纳米颗粒的超分辨成像,但是涉及到纳米颗粒集合,需要考虑纳米颗粒间的耦合作用。利用超越衍射极限的双光束方法,可以在有序金纳米棒阵列上实现远场超分辨光学成像。本文设计了纳米棒长径比为2的5×5金纳米棒阵列,通过矢量光场理论和热扩散理论计算了金纳米棒阵列在连续波激光下的热分布,并模拟了双光束激光即脉冲激发光和连续波抑制光下的散射成像。仿真结果显示,连续波激光能够有效抑制金纳米棒阵列对脉冲激光的散射,双光束方法实现了80 nm横向特征尺寸的超分辨成像。
金纳米棒阵列 温度非线性 超分辨成像 gold nanorod arrays temperature nonlinearity super-resolution optical imaging 
光学仪器
2023, 45(1): 52
作者单位
摘要
1 南昌航空大学航空制造工程学院,江西 南昌 330063
2 宿州学院化学化工学院,安徽 宿州 234099
3 江西洪都航空工业集团有限责任公司,江西 南昌 330024
基于金纳米颗粒薄膜基底和金纳米棒薄膜基底,使用表面增强拉曼光谱(SERS)技术对环丙沙星(CIP)的含量进行了分析检测,为食品中CIP残留检测提供了新方法。通过使用柠檬酸钠还原氯金酸制备金纳米颗粒胶体,以及通过晶种生长法制备金纳米棒胶体,以应用于SERS增强基底。通过不同激发光波长对CIP进行SERS检测,确定了最佳激光波长为780 nm。使用校正集CIP标准溶液,建立CIP浓度-SERS信号强度的工作曲线,使用检验集样本观察工作曲线的预测能力。结果表明:使用金纳米颗粒基底进行CIP的SERS检测,回收率在97.1%~105.0%;使用金纳米棒基底进行SERS检测,回收率在96.3%~121.8%。因此,SERS在检测CIP抗生素领域具有高灵敏度、快速检测等优势。
医用光学与生物技术 表面增强拉曼光谱 环丙沙星 金纳米颗粒 金纳米棒 
激光与光电子学进展
2022, 59(23): 2317001
作者单位
摘要
山东省激光偏光技术重点实验室, 曲阜师范大学, 山东 曲阜 273165
研究了激光诱导沉积制备光纤表面增强拉曼散射(SERS)探针, 并对探针的SERS性能进行检测。 探讨光纤探针制备过程中金纳米棒溶液的浓度对探针灵敏度的影响。 结果表明, 将不同浓度的金纳米棒溶液进行激光诱导, 在光纤端面会形成金纳米棒团簇和分散两种纳米结构。 金纳米棒溶液的浓度、 激光功率、 诱导时间等因素都会对诱导沉积图案产生影响。 实验利用功率为5 mW的激光进行诱导, 在1.5×10-9, 1.0×10-9和7.5×10-10 mol·L-1的金纳米棒溶液中, 经5 min沉积, 制备出不同图案的光纤SERS探针。 采用晶种法合成金纳米棒, 用透射电子显微镜(TEM)观察金纳米棒形貌, 并根据TEM图像分析计算了合成金纳米棒的长径比约为3.8。 用扫描电子显微镜(SEM)观察金纳米棒的形貌以及激光诱导沉积后的纤维修饰端形貌, 7.5×10-10 mol·L-1的金纳米棒溶液进行激光诱导, 金纳米棒在光纤端面分布较为分散, 而1.5×10-9和1.0×10-9 mol·L-1的金纳米棒溶液进行激光诱导, 光纤端面都有大量的金纳米棒聚集成团。 以4-氨基苯硫酚(4-ATP)为样品分子, 通过拉曼光谱对光纤探针的SERS性能进行检测; 为了方便比较, 选取了拉曼频移1 079.972 cm-1处的拉曼强度作图, 结果表明, 金纳米棒浓度为7.5×10-10 mol·L-1时, 经激光诱导制备出的光纤探针性能较好。 采用时域有限差分法(FDTD)模拟形成的图案的热点分布, 进而解释了金纳米棒浓度为7.5×10-10 mol·L-1时制备的光纤探针性能较好的原因。 为了检验光纤探针的重复性, 将测试SERS光谱后的光纤浸入无水乙醇中24小时, 使4-ATP充分溶解在酒精中, 15天后, 再次检测光纤探针的SERS检测性能, 得到与之前检测同样的光谱图, 证明得到的光纤SERS探针具有较强的可重复利用性。 激光诱导制备光纤探针具有操作简单、 成本低廉、 探针制备时间短等优点, 能够实现高灵敏度光纤SERS探针的重复、 批量制备。
金纳米棒 激光诱导 光纤探针 Gold nanorods Laser induction FDTD Fiber probe FDTD 
光谱学与光谱分析
2022, 42(11): 3454
作者单位
摘要
1 安徽大学物质科学与信息技术研究院,安徽合肥,230601
2 中国科学院合肥物质科学研究院,安徽合肥,230031
3 安徽中科赛飞尔科技有限公司,安徽合肥 230088
本文介绍了基于毛细管的金纳米棒(Au nanorods, AuNRs)与金纳米哑铃(Au nanodumbbells, AuNDs)组装结构,并从灵敏性、均一性和重现性等角度对两种不同纳米单元构筑的基底进行了表面增强拉曼散射(surface-enhanced Raman scattering,SERS)效应比较研究。结果表明,合成前驱体和分散体系均相同基础上调控得到的两种纳米单元在表面配体交换处理与构筑工艺一致前提下的基于毛细管组装,AuNDs较AuNRs组装结构表现出更高的SERS活性,而两者的均一性和重现性相当。通过选择SERS效应相对显著的毛细管基AuNDs组装结构对实际水体中的孔雀石绿进行取样和SERS检测,检测能力达到2×10-3 μg/g 量级,表明此策略对实际水体中微量孔雀石绿的快速高灵敏检测具有一定的可行性。
金纳米棒 金纳米哑铃 毛细管 表面增强拉曼光谱 孔雀石绿 Au nanorods Au nanodumbbells Capillary substrate Surface-enhanced Raman spectroscopy Malachite Green 
光散射学报
2021, 33(1): 24
作者单位
摘要
重庆大学光电技术及系统教育部重点实验室, 重庆 400044
表面增强拉曼散射(SERS)很大程度的弥补了拉曼散射强度弱的缺点, 迅速成为科研工作者们的研究热点, 在食品安全、 环境污染、 毒品以及爆炸物检测等领域应用广泛。 纳米技术的发展使得目前对于SERS的研究主要集中于金属纳米颗粒基底的制备, 金属纳米粒子的种类、 尺寸及形貌对SERS增强和吸收峰峰位均有影响, 要获得好的增强效果, 需要对金属纳米结构进行工艺优化。 特别是, 需要结合金属纳米粒子的结构和激励光波长, 以期获得更好的增强效果。 为了研究SERS增强和吸收峰之间的关系, 开展了具有双共振吸收峰的金属纳米粒子的研究。 首先利用FDTD Solutions仿真建模, 主要针对金纳米颗粒直径、 金纳米棒长径比及分布状态对共振吸收峰进行仿真, 得到金纳米球理论直径在50 nm左右, 金纳米棒理论长径比在3.5~4.5左右时, 吸收峰分别分布在532及785 nm附近, 符合多波段激励光拉曼增强条件; 对于激励光偏振方向, 其沿金纳米棒长轴方向偏振时吸收峰位于785 nm附近, 沿金纳米球短轴方向偏振时吸收峰位于532 nm附近。 然后采用种子生长法, 制备了可用于多种波长激励光的双吸收峰表面增强拉曼散射基底。 通过改变硝酸银用量(5, 10, 20, 30和40 μL)、 盐酸用量(0.1和0.2 mL)以及其生长时间(15, 17, 21和23 h)等多种工艺参数来控制金纳米棒含量, 得到了同时含有金纳米球及金纳米棒的双吸收共振峰金纳米粒子。 最后用该样品作为基底, 罗丹明6G(R6G)作为探针分子, 分别测试其在532, 633和785 nm激励光入射时的SERS表征, 对分析物R6G最低检测浓度均达到了10-7 mol·L-1, 增强因子达到了~105, 满足了多波段SERS检测的需要。
表面增强拉曼散射 拉曼光谱 金纳米棒 金纳米球 Surface-enhanced Raman scattering Raman spectroscopy Au nanorods Au nanoparticles 
光谱学与光谱分析
2021, 41(5): 1446
作者单位
摘要
天津大学 材料科学与工程学院, 天津 300350
为了提高信息安全, 防止信息泄露, 进一步拓宽柔性器件在信息安全领域的应用, 本文报道了一种基于双层膜光驱动软体致动器的新型信息示假隐真技术。首先, 将所制得的不同长径比的金纳米棒通过图案遮罩和涂覆的方法, 均匀地分散到聚丙烯/聚酰亚胺复合薄膜体系中, 制得双层膜光热驱动软体致动器, 接着将软体致动器进行选择性剪切。当无外界光刺激时, 我们把该双层膜所呈现的信息定义为第一种假信息; 当外界相应波长的激发光刺激该软体致动器时, 该器件由于发生形变可以展示出另外一种信息,我们定义为第二种假信息; 由于不同的金纳米棒在相应波长光激发下才具有最高的光热转化效率, 因此通过红外相机所观察到的不同区域的温度呈现出一种新的图案, 我们定义为真信息, 起到信息示假隐真作用。实验结果表明: 未接受光照时, 软体致动器处于平整状态; 在相应波长激光刺激下, 被切割部分的软体致动器弯曲角可达到50°以上, 裸眼可以清晰地观测所显示信息;而通过红外相机观测到光热区域与非光热区域温度相差至少在10 ℃以上, 可以明显看到所显示的真信息。将软体致动器与信息示假隐真结合在一起, 具有新颖性, 而且效果明显, 为信息安全问题提供了一个新的解决方案。
信息安全 软体致动器 金纳米棒 光热效应 information security soft actuators gold nanorods photothermal effect 
液晶与显示
2021, 36(2): 229
作者单位
摘要
北京航空航天大学 物理学院, 北京102206
针对有机液晶材料在实际应用中存在热稳定性不足和温度区间较窄等问题, 结合快速发展的纳米材料合成及组装技术, 发挥无机纳米材料富电子、高热稳定的特点, 发展新型无机液晶态材料是目前一个热点研究领域。本文从归纳液晶态组装所蕴含的相变规律及调控机理出发, 包括Onsager硬棒理论、DLVO理论、胶体系统中的熵作用(如排空吸引和位阻排斥), 系统地综述了近年来以熵为主要驱动力的无机液晶态组装的研究进展。进而, 以理想的组装单元之一——金纳米棒为例, 深入讨论了组装方法、颗粒间相互作用对调控组装结构的影响规律, 并例举了所得组装体在光电子器件中的潜在应用。最后, 通过总结组装技术用以制备无机液晶态材料仍存在的问题, 给出可能的解决方案并对未来的发展方向进行了展望。
熵作用 金纳米棒 自组装 无机液晶材料 entropy effect gold nanorods self-assembly inorganic liquid crystal materials 
液晶与显示
2020, 35(7): 662
作者单位
摘要
长春工业大学 化学与生命科学学院, 吉林 长春 130012
表皮生长因子受体(EGFR)是一种肿瘤表面标记性蛋白。本文报道了基于anti-EGFR功能化金纳米棒探针AuNRs probes的表面增强拉曼散射(SERS),用于EGFR阳性肿瘤细胞的检测。通过AuNRs probes上anti-EGFR特异性结合到EGFR阳性癌细胞上,可使修饰于金纳米棒表面的拉曼活性染料4-巯基苯甲酸(4-MBA)位于1 100 cm-1和1 600 cm-1的特征峰强度得到信号增强。该SERS探针由于具有生物兼容性好、细胞拉曼信号稳定、特异性高等优点而具有巨大的临床应用前景。
表面增强拉曼散射 金纳米棒 人表皮生长因子 surface-enhanced Raman scattering(SERS) gold nanorods human epidermal growth factor(EGFR antibody) 
发光学报
2019, 40(10): 1215

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!