激光与光电子学进展, 2017, 54 (7): 070005, 网络出版: 2017-07-05   

量子点发光二极管界面调控研究进展 下载: 606次

Progress on Interfacial Control of Quantum Dot Light-Emitting Diodes
作者单位
浙江大学材料科学与工程学院硅材料国家重点实验室, 浙江 杭州 310027
引用该论文

顾伟, 皮孝东, 杨德仁. 量子点发光二极管界面调控研究进展[J]. 激光与光电子学进展, 2017, 54(7): 070005.

Gu Wei, Pi Xiaodong, Yang Deren. Progress on Interfacial Control of Quantum Dot Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070005.

参考文献

[1] Kagan C R, Lifshitz E, Sargent E H, et al. Building devices from colloidal quantum dots[J]. Science, 2016, 353(6302): 885-895.

[2] Colvin V L, Schlamp M C, Allvisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370(6488): 354-357.

[3] 张文君, 许 键, 翟保才. 垂直结构多色量子点LED(QD-LED)最新进展[J]. 光学技术, 2012, 38(5): 539-544.

    Zhang Wenjun, Xu Jian, Zhai Baocai. Development of vertical structural light emitting diodes based on multi-color colloidal quantum dot[J]. Optical Technique, 2012, 38(5): 539-544.

[4] 张文君, 翟保才, 许 键. ZnO作为电子传输层的绿光胶体CdSe量子点LED(QD-LED)的制备与表征[J]. 发光学报, 2012, 33(11): 1171-1176.

    Zhang Wenjun, Zhai Baocai, Xu Jian. Fabrication and characterization of green CdSe quantumn dot light emitting diodes with ZnO electron-transport layer[J]. Chinese Journal of Luminescence, 2012, 33(11): 1171-1176.

[5] Dai X L, Zhang Z X, Jin Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525): 96-99.

[6] Lee D H, Liu Y P, Lee K H, et al. Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes[J]. Organic Electronics, 2010, 11(3): 427-433.

[7] Castelli A, Meinardi F, Pasini M, et al. High-efficiency all-solution-processed light-emitting diodes based on anisotropic colloidal heterostructures with polar polymer injecting layers[J]. Nano letters, 2015, 15(8): 5455-5464.

[8] Flaig F M, Rinck J, Stephan M, et al. Multicolor silicon light-emitting diodes (SiLEDs)[J]. Nano Letters, 2013, 13(2): 475-480.

[9] Murase S, Yang Y. Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method[J]. Advanced Materials, 2012, 24(18): 2459-2462.

[10] He S, Li S, Wang F, et al. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer[J]. Nanotechnology, 2013, 24(17): 175201.

[11] Tang L, Dai H, Zhang X, et al. Enhanced electroluminescence of all-inorganic colloidal quantum dot light-emitting diode by optimising the MoO3 intermediate layer[J]. Micro & Nano Letters, 2014, 9(6): 421-424.

[12] Vu H-T, Su Y-K, Chiang R-K, et al. Solution-processable MoOx for efficient light-emitting diodes based on giant quantum dots[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2156-2159.

[13] Kim J-Y, Yusoff A R B, Jang J. Quantum-dot light-emitting diode featuring polymeric metal oxide anode buffer layer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 1-6.

[14] Yang X, Mutlugun E, Zhao Y, et al. Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes[J]. Small, 2014, 10(2): 247-252.

[15] Kim H M, Kim J, Lee J, et al. Inverted quantum-dot light emitting diode using solution processed p-type WOx doped PEDOT∶PSS and Li doped ZnO charge generation layer[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24592-24600.

[16] Kim H M, Geng D, Kim J, et al. Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28727-28736.

[17] Kwak J, Lim J, Park M, et al. High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots[J]. Nano Letters, 2015, 15(6): 3793-3799.

[18] Yang X, Hernandez-Martinezv P L, Dang C, et al. Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer[J]. Advanced Optical Materials, 2015, 3(10): 1439-1445.

[19] Gong X W, Yang Z Y, Walters G, et al. Highly efficient quantum dot near-infrared light-emitting diodes[J]. Nature Photonics, 2016, 10: 253-258.

[20] Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010, 4(6): 3169-3174.

[21] Wang D Y, Wang I S, Huang I S, et al. Quantum dot light-emitting diode using solution-processable graphene oxide as the anode interfacial layer[J]. Journal of Physical Chemistry C, 2012, 116(18): 10181-10185.

[22] Lou Q, Ji W Y, Zhao J L, et al. Ammonia reduced graphene oxides as a hole injection layer for CdSe/CdS/ZnS quantum dot light-emitting diodes[J]. Nanotechnology, 2016, 27(32): 325201.

[23] Tao J, Wang H, Lin Q, et al. Quantum-dot-based light-emitting diodes with improved brightness and stability by using sulfuric acid-treated PEDOT∶PSS as efficient hole injection layer[J]. IEEE Transactions on Nanotechnology, 2015, 14(1): 57-61.

[24] Cho N-K, Lee S M, Song K, et al. Enhanced quantum-dot light-emitting diodes using gold nanorods[J]. Journal of the Korean Physical Society, 2015, 67(9): 1667-1671.

[25] Lee S M, Cho N-K, Kang S J. Quantum-dot light-emitting diodes with a double-layer structured hole injection layer[J]. Journal of Vaccum Science & Technology B, 2015, 33(6): 1-4.

[26] Choi M K, Yang J, Kang K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing[J]. Nature Communications, 2015, 6: 7149.

[27] Sun Q J, Wang Y A, Li L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nature Photonics, 2007, 1: 717-722.

[28] Yuan F, Wang Z, Li X, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J]. Advanced Materials, 2017, 29(3): 1-6.

[29] Vu H T, Chiang R K, Huang C Y, et al. Enhanced thermal stability of green-emission quantum-dot light-emitting diodes via composition-gradient thick-shell quantum dots[J]. Applied Physics Express, 2016, 9(8): 082101.

[30] Son D I, Kwon B W, Park D, et al. Emissive ZnO-graphene quantum dots for white-light-emitting diodes[J]. Nature Nanotechnology, 2012, 7: 465-471.

[31] Huang H, Zhao F, Liu L, et al. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28128-28133.

[32] Kim J K, Bae S, Yi Y, et al. Origin of white electroluminescence in graphene quantum dots embedded host/guest polymer light emitting diodes[J]. Scientific Reports, 2015, 5: 1-11.

[33] Deng W, Xu X, Zhang X, et al. Organometal halide perovskite quantum dot light-emitting diodes[J]. Advanced Functional Materials, 2016, 26: 4797-4802.

[34] Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Advanced Materials, 2016, 28: 8718-8725.

[35] Yokoyama T, Yoshimura D, Ito E, et al. Energy level alignment at Alq3/LiF/Al interfaces studied by electron spectroscopies: Island growth of LiF and size-dependence of the electronic structures[J]. Japan Journal of Applied Physics, 2003, 42(6A): 3666-3675.

[36] Kim H M, Yusoff A R B M, Youn J H, et al. Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness[J]. Journal of Materials Chemistry C, 2013, 1(25): 3924-3930.

[37] Son D I, Kim H H, Hwang D K, et al. Inverted CdSe-ZnS quantum dots light-emitting diode using low-work function organic material polyethylenimine ethoxylated[J]. Journal of Materials Chemistry C, 2014, 2(3): 510-514.

[38] Yao L, Yu T, Ba L, et al. Efficient silicon quantum dots light emitting diodes with an inverted device structure[J]. Journal of Materials Chemistry C, 2016, 4(4): 673-677.

[39] Lim J, Park M, Bae W K, et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots[J]. ACS Nano, 2013, 7(10): 9019-9026.

[40] Kim H H, Park S, Yi Y, et al. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO[J]. Scientific Reports, 2015, 5: 8968.

[41] Koh W K, Shin T, Jung C, et al. TCNQ interlayers for colloidal quantum dot light-emitting diodes[J]. Chemphyschem, 2016, 17(8): 1095-1097.

[42] Ji W, Tian Y, Zeng Q, et al. Efficient quantum dot light-emitting diodes by controlling the carrier accumulation and exciton formation[J]. ACS Applied Material & Interfaces, 2014, 6(16): 14001.

[43] Peng H, Wang W, Chen S. Efficient quantum-dot light-emitting diodes with 4, 4, 4-tris(N-carbazolyl)-triphenylamine (TcTa) electron-blocking layer[J]. IEEE Electron Device Letters, 2015, 36(4): 369-371.

[44] Zhang H, Sui N, Chi X, et al. Ultrastable quantum-dot light-emitting diodes by suppression of leakage current and exciton quenching processes[J]. ACS Applied Material & Interfaces, 2016, 8: 31385-31391.

[45] Park Y R, Doh J H, Shin K, et al. Solution-processed quantum dot light-emitting diodes with PANI∶PSS hole-transport interlayers[J]. Organic Electronics, 2015, 19: 131-139.

[46] Koo W H, Jeong S M, Araoka F, et al. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles[J]. Nature Photonics, 2010, 4: 222-226.

[47] Fujiki A, Uemura T, Zettsu N, et al. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode[J]. Applied Physics Letters, 2010, 96(4): 043307.

[48] 陈肖慧, 赵家龙. 倒置器件结构及局域等离子体效应对CdSe量子点LED 发光性能的改进[J]. 发光学报, 2012, 33(12): 1324-1328.

    Chen Xiaohui, Zhao Jialong. Improvement of performance for CdSe quantum dot LEDs by using an inverted device structure and localized surface plasmon resonance[J]. Chinese Journal of Luminescence, 2012, 33(12): 1324-1328.

[49] Pan J, Chen J, Zhao D, et al. Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles[J]. Optics Express, 2016, 24(2): A33-A43.

[50] Steckel J S, Coe-Sullivan S, Bulovic V, et al. 1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device[J]. Advanced Materials, 2003, 15(21): 1862-1866.

[51] Lin G R, Pai Y H, Lin C T, et al. Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes[J]. Applied Physics Letters, 2010, 96(26): 263514.

[52] Cheng C H, Wu C L, Chen C C, et al. Si-rich SixC1-x light-emitting diodes with buried si quantum dots[J]. IEEE Photonics Journal, 2012, 4(5): 1762-1775.

[53] 胡 炼, 吴惠桢. 基于量子点-CBP混合层的量子点LED的制备[J]. 发光学报, 2015, 36(10): 1106-1112.

    Hu Lian, Wu Huizhen. Preparation of quantum dot light-emitting diodes based on the quantum dots-CBP hybrid[J]. Chinese Jouranl of Luminescence, 2015, 36(10): 1106-1112.

[54] Fu S W, Chen H J, Wu H T, et al. Enhancing the electroluminescence efficiency of Si NC/SiO2 superlattice-based light-emitting diodes through hydrogen ion beam treatment[J]. Nanoscale, 2016, 8(13): 7155-7162.

[55] Fokina A, Lee Y, Chang J H, et al. The role of emission layer morphology on the enhanced performance of light-emitting diodes based on quantum dot-semiconducting polymer hybrids[J]. Advanced Material Interfaces, 2016, 3(18): 1-9.

顾伟, 皮孝东, 杨德仁. 量子点发光二极管界面调控研究进展[J]. 激光与光电子学进展, 2017, 54(7): 070005. Gu Wei, Pi Xiaodong, Yang Deren. Progress on Interfacial Control of Quantum Dot Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!