激光与光电子学进展, 2017, 54 (7): 070005, 网络出版: 2017-07-05   

量子点发光二极管界面调控研究进展 下载: 606次

Progress on Interfacial Control of Quantum Dot Light-Emitting Diodes
作者单位
浙江大学材料科学与工程学院硅材料国家重点实验室, 浙江 杭州 310027
摘要
在量子点发光二极管(QLED)中,由于电荷传输层材料能带和迁移率的差异,不可避免地存在电荷注入不平衡的问题。为了制备电荷注入尽可能平衡的高性能QLED,通常利用界面调控。结合QLED的结构,分别从阳极界面调控、阴极界面调控和两相界面调控三个方面综述了近年来QLED界面调控的研究进展,分析了界面调控机理及其对QLED性能的影响。指出了QLED目前存在的问题,并展望了其未来的发展趋势。
Abstract
Due to the difference in energy band and mobility of material in the charge transfer layers of the quantum dot light-emitting diode (QLED), the unbalanced charge injection inevitably occurs. In order to fabricate a high-performance QLED with the most balanced charge injection, the interfacial control is commonly used. Combined with the QLED structures, the recent research progress on the QLED interfacial control for anodes, cathodes, and two-phase interfaces is reviewed. The interfacial control mechanisms and the effects of the interfacial control on the QLED performance are discussed. Challenges and trends in the development of QLED are presented.
参考文献

[1] Kagan C R, Lifshitz E, Sargent E H, et al. Building devices from colloidal quantum dots[J]. Science, 2016, 353(6302): 885-895.

[2] Colvin V L, Schlamp M C, Allvisatos A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370(6488): 354-357.

[3] 张文君, 许 键, 翟保才. 垂直结构多色量子点LED(QD-LED)最新进展[J]. 光学技术, 2012, 38(5): 539-544.

    Zhang Wenjun, Xu Jian, Zhai Baocai. Development of vertical structural light emitting diodes based on multi-color colloidal quantum dot[J]. Optical Technique, 2012, 38(5): 539-544.

[4] 张文君, 翟保才, 许 键. ZnO作为电子传输层的绿光胶体CdSe量子点LED(QD-LED)的制备与表征[J]. 发光学报, 2012, 33(11): 1171-1176.

    Zhang Wenjun, Zhai Baocai, Xu Jian. Fabrication and characterization of green CdSe quantumn dot light emitting diodes with ZnO electron-transport layer[J]. Chinese Journal of Luminescence, 2012, 33(11): 1171-1176.

[5] Dai X L, Zhang Z X, Jin Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525): 96-99.

[6] Lee D H, Liu Y P, Lee K H, et al. Effect of hole transporting materials in phosphorescent white polymer light-emitting diodes[J]. Organic Electronics, 2010, 11(3): 427-433.

[7] Castelli A, Meinardi F, Pasini M, et al. High-efficiency all-solution-processed light-emitting diodes based on anisotropic colloidal heterostructures with polar polymer injecting layers[J]. Nano letters, 2015, 15(8): 5455-5464.

[8] Flaig F M, Rinck J, Stephan M, et al. Multicolor silicon light-emitting diodes (SiLEDs)[J]. Nano Letters, 2013, 13(2): 475-480.

[9] Murase S, Yang Y. Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method[J]. Advanced Materials, 2012, 24(18): 2459-2462.

[10] He S, Li S, Wang F, et al. Efficient quantum dot light-emitting diodes with solution-processable molybdenum oxide as the anode buffer layer[J]. Nanotechnology, 2013, 24(17): 175201.

[11] Tang L, Dai H, Zhang X, et al. Enhanced electroluminescence of all-inorganic colloidal quantum dot light-emitting diode by optimising the MoO3 intermediate layer[J]. Micro & Nano Letters, 2014, 9(6): 421-424.

[12] Vu H-T, Su Y-K, Chiang R-K, et al. Solution-processable MoOx for efficient light-emitting diodes based on giant quantum dots[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2156-2159.

[13] Kim J-Y, Yusoff A R B, Jang J. Quantum-dot light-emitting diode featuring polymeric metal oxide anode buffer layer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 1-6.

[14] Yang X, Mutlugun E, Zhao Y, et al. Solution processed tungsten oxide interfacial layer for efficient hole-injection in quantum dot light-emitting diodes[J]. Small, 2014, 10(2): 247-252.

[15] Kim H M, Kim J, Lee J, et al. Inverted quantum-dot light emitting diode using solution processed p-type WOx doped PEDOT∶PSS and Li doped ZnO charge generation layer[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24592-24600.

[16] Kim H M, Geng D, Kim J, et al. Metal-oxide stacked electron transport layer for highly efficient inverted quantum-dot light emitting diodes[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 28727-28736.

[17] Kwak J, Lim J, Park M, et al. High-power genuine ultraviolet light-emitting diodes based on colloidal nanocrystal quantum dots[J]. Nano Letters, 2015, 15(6): 3793-3799.

[18] Yang X, Hernandez-Martinezv P L, Dang C, et al. Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer[J]. Advanced Optical Materials, 2015, 3(10): 1439-1445.

[19] Gong X W, Yang Z Y, Walters G, et al. Highly efficient quantum dot near-infrared light-emitting diodes[J]. Nature Photonics, 2016, 10: 253-258.

[20] Li S S, Tu K H, Lin C C, et al. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells[J]. ACS Nano, 2010, 4(6): 3169-3174.

[21] Wang D Y, Wang I S, Huang I S, et al. Quantum dot light-emitting diode using solution-processable graphene oxide as the anode interfacial layer[J]. Journal of Physical Chemistry C, 2012, 116(18): 10181-10185.

[22] Lou Q, Ji W Y, Zhao J L, et al. Ammonia reduced graphene oxides as a hole injection layer for CdSe/CdS/ZnS quantum dot light-emitting diodes[J]. Nanotechnology, 2016, 27(32): 325201.

[23] Tao J, Wang H, Lin Q, et al. Quantum-dot-based light-emitting diodes with improved brightness and stability by using sulfuric acid-treated PEDOT∶PSS as efficient hole injection layer[J]. IEEE Transactions on Nanotechnology, 2015, 14(1): 57-61.

[24] Cho N-K, Lee S M, Song K, et al. Enhanced quantum-dot light-emitting diodes using gold nanorods[J]. Journal of the Korean Physical Society, 2015, 67(9): 1667-1671.

[25] Lee S M, Cho N-K, Kang S J. Quantum-dot light-emitting diodes with a double-layer structured hole injection layer[J]. Journal of Vaccum Science & Technology B, 2015, 33(6): 1-4.

[26] Choi M K, Yang J, Kang K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing[J]. Nature Communications, 2015, 6: 7149.

[27] Sun Q J, Wang Y A, Li L S, et al. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nature Photonics, 2007, 1: 717-722.

[28] Yuan F, Wang Z, Li X, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J]. Advanced Materials, 2017, 29(3): 1-6.

[29] Vu H T, Chiang R K, Huang C Y, et al. Enhanced thermal stability of green-emission quantum-dot light-emitting diodes via composition-gradient thick-shell quantum dots[J]. Applied Physics Express, 2016, 9(8): 082101.

[30] Son D I, Kwon B W, Park D, et al. Emissive ZnO-graphene quantum dots for white-light-emitting diodes[J]. Nature Nanotechnology, 2012, 7: 465-471.

[31] Huang H, Zhao F, Liu L, et al. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28128-28133.

[32] Kim J K, Bae S, Yi Y, et al. Origin of white electroluminescence in graphene quantum dots embedded host/guest polymer light emitting diodes[J]. Scientific Reports, 2015, 5: 1-11.

[33] Deng W, Xu X, Zhang X, et al. Organometal halide perovskite quantum dot light-emitting diodes[J]. Advanced Functional Materials, 2016, 26: 4797-4802.

[34] Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Advanced Materials, 2016, 28: 8718-8725.

[35] Yokoyama T, Yoshimura D, Ito E, et al. Energy level alignment at Alq3/LiF/Al interfaces studied by electron spectroscopies: Island growth of LiF and size-dependence of the electronic structures[J]. Japan Journal of Applied Physics, 2003, 42(6A): 3666-3675.

[36] Kim H M, Yusoff A R B M, Youn J H, et al. Inverted quantum-dot light emitting diodes with cesium carbonate doped aluminium-zinc-oxide as the cathode buffer layer for high brightness[J]. Journal of Materials Chemistry C, 2013, 1(25): 3924-3930.

[37] Son D I, Kim H H, Hwang D K, et al. Inverted CdSe-ZnS quantum dots light-emitting diode using low-work function organic material polyethylenimine ethoxylated[J]. Journal of Materials Chemistry C, 2014, 2(3): 510-514.

[38] Yao L, Yu T, Ba L, et al. Efficient silicon quantum dots light emitting diodes with an inverted device structure[J]. Journal of Materials Chemistry C, 2016, 4(4): 673-677.

[39] Lim J, Park M, Bae W K, et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots[J]. ACS Nano, 2013, 7(10): 9019-9026.

[40] Kim H H, Park S, Yi Y, et al. Inverted quantum dot light emitting diodes using polyethylenimine ethoxylated modified ZnO[J]. Scientific Reports, 2015, 5: 8968.

[41] Koh W K, Shin T, Jung C, et al. TCNQ interlayers for colloidal quantum dot light-emitting diodes[J]. Chemphyschem, 2016, 17(8): 1095-1097.

[42] Ji W, Tian Y, Zeng Q, et al. Efficient quantum dot light-emitting diodes by controlling the carrier accumulation and exciton formation[J]. ACS Applied Material & Interfaces, 2014, 6(16): 14001.

[43] Peng H, Wang W, Chen S. Efficient quantum-dot light-emitting diodes with 4, 4, 4-tris(N-carbazolyl)-triphenylamine (TcTa) electron-blocking layer[J]. IEEE Electron Device Letters, 2015, 36(4): 369-371.

[44] Zhang H, Sui N, Chi X, et al. Ultrastable quantum-dot light-emitting diodes by suppression of leakage current and exciton quenching processes[J]. ACS Applied Material & Interfaces, 2016, 8: 31385-31391.

[45] Park Y R, Doh J H, Shin K, et al. Solution-processed quantum dot light-emitting diodes with PANI∶PSS hole-transport interlayers[J]. Organic Electronics, 2015, 19: 131-139.

[46] Koo W H, Jeong S M, Araoka F, et al. Light extraction from organic light-emitting diodes enhanced by spontaneously formed buckles[J]. Nature Photonics, 2010, 4: 222-226.

[47] Fujiki A, Uemura T, Zettsu N, et al. Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode[J]. Applied Physics Letters, 2010, 96(4): 043307.

[48] 陈肖慧, 赵家龙. 倒置器件结构及局域等离子体效应对CdSe量子点LED 发光性能的改进[J]. 发光学报, 2012, 33(12): 1324-1328.

    Chen Xiaohui, Zhao Jialong. Improvement of performance for CdSe quantum dot LEDs by using an inverted device structure and localized surface plasmon resonance[J]. Chinese Journal of Luminescence, 2012, 33(12): 1324-1328.

[49] Pan J, Chen J, Zhao D, et al. Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles[J]. Optics Express, 2016, 24(2): A33-A43.

[50] Steckel J S, Coe-Sullivan S, Bulovic V, et al. 1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device[J]. Advanced Materials, 2003, 15(21): 1862-1866.

[51] Lin G R, Pai Y H, Lin C T, et al. Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes[J]. Applied Physics Letters, 2010, 96(26): 263514.

[52] Cheng C H, Wu C L, Chen C C, et al. Si-rich SixC1-x light-emitting diodes with buried si quantum dots[J]. IEEE Photonics Journal, 2012, 4(5): 1762-1775.

[53] 胡 炼, 吴惠桢. 基于量子点-CBP混合层的量子点LED的制备[J]. 发光学报, 2015, 36(10): 1106-1112.

    Hu Lian, Wu Huizhen. Preparation of quantum dot light-emitting diodes based on the quantum dots-CBP hybrid[J]. Chinese Jouranl of Luminescence, 2015, 36(10): 1106-1112.

[54] Fu S W, Chen H J, Wu H T, et al. Enhancing the electroluminescence efficiency of Si NC/SiO2 superlattice-based light-emitting diodes through hydrogen ion beam treatment[J]. Nanoscale, 2016, 8(13): 7155-7162.

[55] Fokina A, Lee Y, Chang J H, et al. The role of emission layer morphology on the enhanced performance of light-emitting diodes based on quantum dot-semiconducting polymer hybrids[J]. Advanced Material Interfaces, 2016, 3(18): 1-9.

顾伟, 皮孝东, 杨德仁. 量子点发光二极管界面调控研究进展[J]. 激光与光电子学进展, 2017, 54(7): 070005. Gu Wei, Pi Xiaodong, Yang Deren. Progress on Interfacial Control of Quantum Dot Light-Emitting Diodes[J]. Laser & Optoelectronics Progress, 2017, 54(7): 070005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!