Photonic Sensors, 2019, 9 (2): 0297, Published Online: Apr. 12, 2019  

Application of MZI Symmetrical Structure With Fiber Balls and Seven-Core Fiber in Microdisplacement Measurement

Author Affiliations
1 Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China
2 Overseas Expertise Introduction Center for Discipline Innovation (“111 Center”), Beijing Information Science & Technology University, Beijing 100192, China
3 Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
Abstract
An optical fiber microdisplacement sensor based on symmetric Mach-Zehnder interferometer (MZI) with a seven-core fiber and two single-mode fiber balls is proposed. The rationality and manufacturing process of the MZI sensing structure are analyzed. The fabrication mechanism of the Mach-Zehnder sensor by CO2 laser is described in detail. Experimental results show that temperature sensitivities of the two dips are 98.65pm/℃ and 89.72pm/℃, respectively. The microdisplacement sensitivities are 2017.71 pm/mm and 2457.92 pm/mm, respectively. The simultaneous measurement of temperature and microdisplacement is demonstrated based on the sensitive matrix. The proposed Mach-Zehnder interference sensor exhibits the advantages of compact structure, simple manufacturing process, and high reliability.
References

[1] A. Babu and B. George, “Design and development of a new non-contact inductive displacement sensor,” IEEE Sensors Journal, 2018, 18(3): 976.984.

[2] S. Rana, B. George, and V. J. Kumar, “An efficient digital converter for a non-contact inductive displacement sensor,” IEEE Sensors Journal, 2018, 18(1): 263.272.

[3] X. Rimpault, E. B. Nehme, M. Balazinski, and J. R. R. Mayer, “Online monitoring and failure detection of capacitive displacement sensor in a Capball device using fractal analysis,” Measurement, 2018, 118: 23.28.

[4] A. Arifin, A. M. Hatta, Sekartedjo, M. S. Muntini, and A. Rubiyanto, “Long-range displacement sensor based on SMS fiber structure and OTDR,” Photonic Sensors, 2015, 5(2): 166.171.

[5] M. Sethuramalingam and U. Subbiah, “Enhancing the linearity characteristics of photoelectric displacement sensor based on extreme learning machine method,” Photonic Sensors, 2015, 5(1): 24.31.

[6] X. L. Xie, B. W. Wang, L. L. Zhou, L. Weng, and Y. Sun, “Research on torsional ultrasonic attenuation characteristics of the magnetostrictive displacement sensor waveguide,” Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2018, 33(3): 689.696.

[7] S. M. Chen, Y. Liu, X. X. Liu, Y. Zhang, and W. Peng, “Self-compensating displacement sensor based on hydramatic structured transducer and fiber Bragg grating,” Photonic Sensors, 2015, 5(4): 351.356.

[8] C. Zhong, C. Y. Shen, J. L. Chu, X. Zou, K. Li, Y. X. Jin, et al., “A displacement sensor based on a temperature-insensitive double trapezoidal structure with fiber Bragg grating,” IEEE Sensors Journal, 2012, 12(5): 1280.1283.

[9] C. W. Shangguan, W. He, W. Zhnag, F. Luo, and L. Q. Zhu, “Optical fiber Fabry-Perot displacement sensor based on chemical etching method,” Semiconductor Optoelectronics, 2018, 39(02): 170-173.

[10] C. Liu, W. Zhang, M. L. Dong, X. P. Lou, and L. Q. Zhu, “Dual-parameter sensing characteristics of long period fiber grating cascaded with fiber MZ structure fabricated by CO2 laser,” Infrared & Laser Engineering, 2017, 46(9): 922001.922007.

[11] Y. Wang, Y. H. Li, C. R. Liao, D. N. Wang, M. W. Yang, and P. X. Lu, “High-temperature sensing using miniaturized fiber in-line Mach-Zehnder interferometer,” IEEE Photonics Technology Letters, 2009, 22(1): 39.41.

[12] H. S. Lin, Y. M. Raji, J. H. Lim, S. K. Liu, M. R. Mokhtar, and Z. Yusoff, “Packaged in-line Mach-Zehnder interferometer for highly sensitive curvature and .exural strain sensing,” Sensors & Actuators A: Physical, 2016, 250: 237.242.

[13] J. P. Chen, J. Zhou, and Z. H. Jia, “High-sensitivity displacement sensor based on a bent fiber Mach-Zehnder interferometer,” IEEE Photonics Technology Letters, 2013, 25(23): 2354.2357.

[14] C. Y. Shen, J. L. Chu, Y. F. Lu, D. B. Chen, C. Zhong, Y. Li, et al., “High sensitive micro-displacement sensor based on M-Z interferometer by a bowknot type taper,” IEEE Photonics Technology Letters, 2013, 26(1): 62.65.

[15] S. Zhou, B. Huang, and X. W. Shu, “A multi-core fiber based interferometer for high temperature sensing,” Measurement Science & Technology, 2017, 28(4): 045107.

[16] L. Duan, P. Zhang, M. Tang, R. X. Wang, Z. Y. Zhao, S. N. Fu, et al., “Heterogeneous all-solid multicore fiber based multipath Michelson interferometer for high temperature sensing,” Optics Express, 2016, 24(18): 20210.20217.

[17] B. Yin, Y. Li, Z. B. Liu, S. C. Feng, Y. L. Bai, Y. Xu, et al., “Investigation on a compact inline multimode-single-mode-multimode fiber structure,” Optics & Laser Technology, 2016, 80: 16.21.

[18] L. C. Li, L. Xia, Z. H. Xie, and D. M. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Optics Express, 2012, 20(10): 11109.11120.

[19] D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach-Zehnder interferometer based on two peanut-shape structures,” Journal of Lightwave Technology, 2012, 30(5): 805.810.

Liming ZHAO, Hong LI, Yanming SONG, Mingli DONG, Lianqing ZHU. Application of MZI Symmetrical Structure With Fiber Balls and Seven-Core Fiber in Microdisplacement Measurement[J]. Photonic Sensors, 2019, 9(2): 0297.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!