激光与光电子学进展, 2018, 55 (7): 070604, 网络出版: 2018-07-20  

一种高双折射负色散的缺陷型光子晶体光纤 下载: 633次

A Defect Photonic Crystal Fiber With High Birefringence and Negative Dispersion
作者单位
1 萍乡学院机械电子工程学院, 江西 萍乡 337055
2 赣南师范大学物理与电子信息学院, 江西 赣州 341000
摘要
设计了一种中心带有椭圆空气孔缺陷的光子晶体光纤,采用全矢量有限元法研究了该光纤基模的电场分布、双折射、色散、非线性及限制损耗等特性。结果表明,电场能量被束缚在光纤的纤芯。在λ=1.55 μm处,光纤的双折射为5.958×10-2,达到10-2数量级;在1.50~1.60 μm波段范围内,色散值在(-549.2±5) ps/(nm·km)范围内,具有高负平坦色散。此外,该光纤的x偏振基模的非线性系数为46.82 W-1·km-1,低损耗值为5.413×10-4 dB/km,并且在y方向上两个基模偏振态的限制损耗是x方向的6423倍。该光子晶体光纤具有高双折射、高非线性、高负平坦色散、低损耗的特点,在光纤传感、偏振控制、色散补偿及非线性光学等领域具有广阔的应用前景。
Abstract
A new type of photonic crystal fiber with elliptical air holes in the center is designed, and we study the properties including electric field distribution, birefringence, dispersion, nonlinearity, and confinement loss of fundamental mode of this fiber by using full vector finite element method. The results show that the electric field energy is bound in the fiber core. The birefringence can be reached 5.958×10-2, which reaches the magnitude of 10-2 at a wavelength of 1.55 μm. In the wavelength range from 1.50 μm to 1.60 μm, the dispersion is (-549.2±5) ps/(nm·km), which is a highly flattened negative dispersion. The nonlinear coefficient in x-polarization of this fiber is 46.82 W-1·km-1, and the low confinement loss is 5.413×10-4 dB/km at 1.55 μm, and the confinement losses of the polarization states in the y direction are 6423 times than those in the x direction. The proposed photonic crystal fiber has the characteristic of high birefringence, high nonlinearity, highly flattened negative dispersion, and low confinement loss, which could be widely used in the field of optical fiber sensing, polarization control, dispersion compensation, nonlinear optics and so on.
参考文献

[1] Russell P S, Hand D P, Chow Y T, et al. Optically induced creation, transformation, and organization of defects and color centers in optical fibers[J]. Proceedings of SPIE, 1991, 1516: 47-54.

[2] Wang W, Zhu Z M. Analysis of photonic crystal fibers and its application in supercontinuum[J]. Infrared and Laser Engineering, 2007, 36(5): 684-688.

[3] Hao R, Li Z, Sun G, et al. Analysis on photonic crystal fibers with circular air holes in elliptical configuration[J]. Optical Fiber Technology, 2013, 19(5): 363-368.

[4] Ortigosa-Blanch A, Knight J C, Wadsworth W J, et al. Highly birefringent photonic crystal fibers[J]. Optics Letters, 2000, 25(18): 1325-1327.

[5] 张磊, 李曙光, 姚艳艳, 等. 高双折射纳米结构光子晶体光纤特性研究[J]. 物理学报, 2010, 59(2): 1101-1107.

    Zhang L, Li S G, Yao Y Y, et al. Characteristics of nano-structured photonic crystal fibers with high birefringence[J]. Acta Physica Sinica, 2010, 59(2): 1101-1107.

[6] 曹晔, 李荣敏, 童峥嵘. 一种新型高双折射光子晶体光纤特性研究[J]. 物理学报, 2013, 62(8): 084215.

    Cao Y, Li R M, Tong Z R. Investigation of a new kind of high birefringence photonic crystal fiber[J]. Acta Physica Sinica, 2013, 62(8): 084215.

[7] 周铭皓, 黄勇林. 椭圆高双折射光子晶体光纤的双折射及损耗研究[J]. 光子学报, 2016, 45(3): 0306002.

    Zhou M H, Huang Y L. Highly birefringent photonic crystal fiber based on lattice structure of elliptic layer[J]. Acta Photonica Sinica, 2016, 45(3): 0306002.

[8] 李绪友, 许振龙, 杨汉瑞, 等. 保偏空芯带隙光子晶体光纤温度特性研究[J]. 中国激光, 2016, 43(4): 0405003.

    Li X Y, Xu Z L, Yang H R, et al. Analysis of thermal properties in a polarization-maintaining air-core photonic bandgap fiber[J]. Chinese Journal of Lasers, 2016, 43(4): 0405003.

[9] 谷芊志, 励强华. 一种高双折射、低损耗的新型光子晶体光纤[J]. 激光与光电子学进展, 2017, 54(6): 060603.

    Gu Q Z, Li Q H. Novel photonic crystal fiber with high birefringence and low loss[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060603.

[10] 王俊达, 陈颖, 陈向宁. 基于色散补偿光子晶体光纤的双通道光子时间拉伸模数转换器系统研究[J]. 光学学报, 2017, 37(12): 1206003.

    Wang J D, Chen Y, Chen X N. Dual-channel photonic time-stretched analog-to-digital converter system based on dispersion compensating photonic crystal fiber[J]. Acta Optica Sinica, 2017, 37(12): 1206003.

[11] Fujisawa T, Koshiba M. Finite element characterization of chromatic dispersion in nonlinear holey fibers[J]. Optics Express, 2003, 11(13): 1481-1489.

[12] Miao R C, Zhang Y N, Ren L Y, et al. Polarization properties of elliptical core non-hexagonal symmetry polymer photonic crystal fibre[J]. Chinese Physics B, 2007, 16(6): 1719-1724.

[13] Boyd R W. Nonlinear optics[M]. London: Academic Press, 2003.

[14] Liou J H, Huang S S, Yu C P. Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers[J]. Optics Communications, 2010, 283(6): 971-974.

[15] Chow K K, Shu C, Lin C, et al. Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber[J]. IEEE Photonics Technology Letters, 2005, 17(3): 624-626.

[16] 杨天宇, 姜海明, 王二垒, 等. 一种近红外波段的高双折射高非线性光子晶体光纤[J]. 红外与毫米波学报, 2016, 35(3): 350-354.

    Yang T Y, Jiang H M, Wang E L, et al. A photonic crystal fibers with large birefringence and high nonlinearity in near-infrared band[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 350-354.

廖昆, 廖健飞, 谢应茂, 王形华, 田华. 一种高双折射负色散的缺陷型光子晶体光纤[J]. 激光与光电子学进展, 2018, 55(7): 070604. Liao Kun, Liao Jianfei, Xie Yingmao, Wang Xinghua, Tian Hua. A Defect Photonic Crystal Fiber With High Birefringence and Negative Dispersion[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070604.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!