光子学报, 2017, 46 (4): 0413002, 网络出版: 2017-05-03   

基于耦合开口方环共振空腔的可控法诺共振研究

Controllable Fano Resonance Based on Coupled Square Split-Ring Resonance Cavity
作者单位
兰州大学 信息科学与工程学院 现代通信技术研究所, 兰州 730000
摘要
基于表面等离子激元理论与金属-介质-金属波导结构提出一个由开口方环共振空腔、挡板及MIM波导组成的波导结构, 并使用有限元方法系统地研究了该结构的透射特性.仿真计算结果表明:该结构可以产生法诺共振现象, 其共振波长可以通过改变开口方环空腔的长度及开口大小进行调节, 该结构敏感度可达1 600 nm/RIU,品质因数为1.31×105.此外, 通过调整方环共振空腔上开口的位置, 在波导中产生了双重法诺共振现象, 其敏感度可达1 700 nm/RIU, 品质因数为8.3×104.该结构有望在光学集成回路, 尤其是纳米生物传感器方面得到比较广泛的应用.
Abstract
Based on the theory of Surface Plasmon Polaritons(SPPs) and the Metal-Insulator-Metal(MIM) waveguide structure, a waveguide structure was proposed, which consists of a square split-ring resonance cavity, a baffle and a MIM waveguide. The transmission characteristics of this structure is calculated by using the Finite-Element Method(FEM).The simulation results show a Fano resonance in the transmission spectra, and the resonant wavelength can be easily tuned by changing the length of the square split-ring resonance cavity or the width of the split. The sensitivity and the figure of merit of this structure is 1 600 nm/RIU and 1.3×105 separately. By changing the position of the split, double Fano resonances can be observed in the waveguide with a sensitivity of 1 700 nm/RIU and the figure of merit of 8.3×104 respectively. The waveguide structure may have wide applications in highly integrated optical circuits , especially for nano bio-sensor.
参考文献

[1] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics.[J]. Nature, 2003, 424(6950): 824-830.

[2] MAIER S A, KIK P G, Atwater H A, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides[J]. Nature Mater, 2003, 2(4): 229-232.

[3] TAKAHARA J, YAMAGISHI S, TAKI H, et al. Guiding of a one-dimensional optical beam with nanometer diameter[J]. Optics Letters, 1997, 22(7): 474-475.

[4] MAIER SA. Plasmonic field enhancement and SERS in the effective mode volume picture[J]. Optics Express, 2006, 14(5): 1957-1964.

[5] 吴德昌, 杨树. 等离子体诱导透明的T形-圆形波导滤波器[J]. 发光学报, 2016, 37(10) 1287-1291.

    WU De-chang, YANG Shu. Double-sided T-shaped-disk waveguide filters based on plasmon-induced transparency[J]. Chinese Journal of Luminescence, 2016, 37(10): 1287-1291.

[6] HOSSEINI A, MASSOUD Y. Nanoscale surface plasmon based resonator using rectangular geometry[J]. Applied Physics Letters, 2007, 90(18): 181102.

[7] ZHANG Qing, HUANG Xu-gang, LIN Xian-shi, et al. A subwavelength coupler-type MIM optical filter[J]. Optics Express, 2009, 17(9): 7549-7554.

[8] CHEN Jian-jun, LI Zhi, ZOU Yu-jiao, et al. Coupled-resonator-induced fano resonances for plasmonic sensing with ultra-high figure of merits[J]. Plasmonics, 2013, 8(4): 1627-1632.

[9] CHEN Zhao, CAO Xue-yan, SONG Xiao-kang, et al. Side-coupled cavity-induced Fano resonance and its application in nanosensor[J]. Plasmonics, 2015, 11(1): 1-7.

[10] GRAMOTNEV D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91.

[11] OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193.

[12] LUK′YANCHUK B, ZHELUDEV N, MAIER S, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707-715.

[13] 娄小伟, 崔锦江, 董宁宁, 等. 基于眼型谐振腔的Fano谐振曲线尖锐度的分析[J]. 光子学报, 2015, 44(1): 0113002.

    LOU Xiao-wei, CUI Jin-jiang, DONG Ning-ning, et al. Analysis of sharpness Fano resonance line based on eye-like resonator[J]. Acta Photonica Sinica, 2015, 44(1): 0113002.

[14] MIROSHNICHENKO A E, FLACH S, KIVSHAR Y S. Fano resonances in nanoscale structures[J]. Review of Modern Physics, 2009, 82(3): 2257-2298.

[15] CHEN Jian-jun, LI Zhi, ZHANG Xiang, et al. Submicron bidirectional all-optical plasmonic switches[J]. Scientific Reports, 2013, 3(3): 1451.

[16] 陈慧斌, 张志东, 闫树斌, 等. 基于半圆形与矩形谐振腔耦合结构的Fano共振[J]. 光子学报, 2016(8): 0823002.

    CHEN Hui-bin, ZHANG Zhi-dong, YAN Shu-bin, et al. Fano resonance based on a rectangular cavity coupled with a semi-circular cavity[J].Acta Photonica Sinica, 2016(8): 0823002.

[17] CHEN Zhao, YU Li. Multiple Fano resonances based on different waveguide modes in a symmetry breaking plasmonic system[J]. IEEE Photonics Journal, 2014, 6(6): 4802208.

[18] WEN Kun-hua, HU Yi-hua, CHEN Li, et al. Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide[J]. Plasmonics, 2015, 10(1): 27-32.

[19] CHEN Zhao, SONG Xiao-kang, DUAN Gao-yan, et al. Multiple Fano resonances control in MIM side-coupled cavities systems[J]. IEEE Photonics Journal, 2015, 7(3): 2701009.

[20] 安厚霖, 张冠茂, 胡南, 等. 基于耦合T型空腔的多重法诺共振现象研究[J]. 光子学报, 2016, 45(11): 1113003.

    AN Hou-lin, ZHANG Guan-mao, HU Nan, et al. Study on phenomenon of multiple fano resonances based on coupled T-type cavity[J]. Acta Photonica Sinica,2016, 45(11): 1113003.

[21] MA Fu-sheng, LEE Cheng-kuo. Optical nanofilters based on meta-atom side-coupled plasmonics metal-insulator-metal waveguides[J]. Journal of Lightwave Technology, 2013, 31(17): 2876-2880.

[22] WEN Kun-hua, HU Yi-hua, CHEN Li, et al. Multiple plasmon-induced transparency responses in a subwavelength inclined ring resonators system[J]. IEEE Photonics Journal, 2015, 7(6): 4801807.

[23] IMAN Z, AMIRREZA M, MOHAMMAD A. Selective-mode optical nanofilters based on plasmonic complementary split-ring resonators[J].Optics Express, 2012, 20(7): 7516-7525.

[24] LIN Xian-shi, HUANG Xu-guang. Tooth-shaped plasmonic waveguide filters with nanometeric sizes[J]. Optics Letters, 2009 , 33(23): 2874-2876.

[25] CHEN Zhao, WANG Wen-hui, CUI Lu-na, et al. Spectral splitting based on electromagnetically induced transparency in plasmonic waveguide resonator system[J]. Plasmonics, 2015, 10(3): 721-727.

[26] FAN Shan-hui. Sharp asymmetric line shapes in side-coupled waveguide-cavity systems[J]. Applied Physics Letters, 2002, 80(6): 908-910.

[27] ZHANG Zhao, SHI Feng-hua, CHEN Yi-hua. Tunable multichannel plasmonic filter based on coupling-induced mode splitting[J]. Plasmonics, 2015, 10(1): 139-144.

[28] WANG Guo-xi, LU Hua, LIU Xue-ming, et al. Tunable multi-channel wavelength demultiplexer based on MIM plasmonic nanodisk resonators at telecommunication regime[J]. Optics Express, 2011, 19(4): 3513-3518.

[29] CHEN Jian-jun, SUN Cheng-wei, GONG Qi-huang. Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide[J]. Optics Letters, 2014, 39(1): 52-55.

[30] BECKER J, TRüGLER J, JAKAB A, et al. The optimal aspect ratio of gold nanorods for plasmonic bio-sensing[J]. Plasmonics, 2010, 5(2): 161-167.

[31] AMELING R, LANGGUTH L, HENTSCHE M, et al. Cavity-enhanced localized plasmon resonance sensing[J]. Applied Physics Letters, 2010, 97(25): 253116.

[32] LIU Jian-long, FANG Guang-yu, ZHAO Hai-fa, et al. Plasmon flow control at gap waveguide junctions using square ring resonators[J]. Journal of Physics D Applied Physics, 2010, 43(5): 055103.

[33] KEKATPURE R D, HRYCIW A C, BARNAD E S, et al. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator[J]. Optics Express, 2009, 17(26): 24112-24129.

石悦, 张冠茂, 安厚霖, 胡南, 顾梦琪. 基于耦合开口方环共振空腔的可控法诺共振研究[J]. 光子学报, 2017, 46(4): 0413002. SHI Yue, ZHANG Guan-mao, AN Hou-lin, HU Nan, GU Meng-qi. Controllable Fano Resonance Based on Coupled Square Split-Ring Resonance Cavity[J]. ACTA PHOTONICA SINICA, 2017, 46(4): 0413002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!