大气与环境光学学报, 2018, 13 (4): 258, 网络出版: 2018-08-04   

大气湍流影响星地相干激光通信的数值仿真

Numerical Simulation of Influence of Atmospheric Turbulence on Satellite-to-Ground Coherent Laser Communication
作者单位
1 中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室, 安徽 合肥 230031
2 中国科学技术大学,安徽 合肥 230022
摘要
由于解析法在研究相干光通信的相位补偿等问题中存在困难,采用多层相位屏分步传输的数值仿真方法研究大气湍流对星地相干 光通信下行传输的影响。首先建立了卫星地面之间的大气湍流中激光传输的仿真模型,可以实现不同天顶角和不同湍流条件下 的光传输仿真计算。然后用其进行地球同步轨道(GEO)卫星下行光通信的数值仿真分析,并通过与理论值的对比来检验算法的可靠性。 最后结合二进制相移键控(binary phase shift keying, BPSK)相干激光通信系统的误码率(bit error rate, BER)模型, 计算分析了下行激光通信信号的衰落系数和BER。
Abstract
It is difficult to resolve the phase compensation problem in the coherent optical communications using theoretical analytical method. To solve the problem, the split-step beam propagation method is used to study the influence of the atmospheric turbulence on satellite-to-ground coherent optical communication. The simulation model of the laser propagation in the turbulence is established. And then the geostationary earth orbit(GEO) satellite-to-ground downlink laser propagation is simulated. The simulation results are in a good agreement with the theoretical results, which proves the validity of this method. At last, using this simulation method, the fading coefficient and bit error rate of binary phase shift keying (BPSK) coherent optical communication are calculated and analyzed.
参考文献

[1] Majumdar A K, Ricklin J C.Free-Space Laser Communications[M]. New York: Springer, 2008.

[2] Andrews L C, Phillips R L, Hopen C Y,et al. Theory of optical scintillation[J]. Journal of the Optical Society of America A, 1999, 1(6): 1417-1429.

[3] Andrews L C, Al-Habash M A, Hopen C Y,et al. Theory of optical scintillation: Gaussian-beam wave model[J]. Waves in Random and Complex Media, 2001, 11(3): 271-291.

[4] Andrews L C, Phillips R L, Hopen C Y. Scintillation model for a satellite communication link at large zenith angles[J].Optical Engineering, 2000, 39(12): 3272-3280.

[5] Andrews L C, Phillips R L, Yu P T. Optical scintillations and fade statistics for a satellite-communication system[J]. 1995, 34(33): 7742-7751.

[6] Tyson R K. Bit-error rate for free-space adaptive optics laser communications[J].Journal of the Optical Society of America A Optics Image Science & Vision, 2002, 19(4): 753-758.

[7] Tyson R K, Canning D E. Indirect measurement of a laser communications bit-error-rate reduction with low order adaptive optics[J].Applied Optics, 2003, 42(21): 4239-4243.

[8] Belmonte A, Kahn J M. Capacity of coherent free-space optical links using diversity-combining techniques[J].Optics Express, 2009, 17(4): 2763-2773.

[9] Belmonte A. Influence of atmospheric phase compensation on optical heterodyne power measurements[J].Optics Express, 2008, 1(9): 6756-6767.

[10] Belmonte A, Kahn J M. Performance of synchronous optical receivers using atmospheric compensation techniques[J].Optics Express, 2008, 1(18): 14151-14162.

[11] Alhabash A, Andrews L C. New mathematical model for the intensity PDF of a laser beam propagating through turbulent media[J].Optical Engineering, 2001, 40(8): 1554-1562.

[12] Flatté S M, Gerber J S. Irradiance-variance behavior by numerical simulation for plane-wave and spherical-wave optical propagation through strong turbulence[J].Journal of the Optical Society of America A, 2000, 17(6): 1092.

[13] Rod Frehlich. Simulation of laser propagation in a turbulent atmosphere[J].Applied Optics, 1999, 39(3): 393-397.

[14] Johnston R A, Lane R G. Modeling scintillation from an aperiodic Kolmogorov phase screen[J].Applied Optics, 2000, 39(26): 4761-4769.

[15] chmidt J D. Numerical simulation of optical wave propagation with examples in MATLAB[C].SPIE, 2010.

[16] Mcglamery B L. Computer simulation studies of compensation of turbulence degraded images[C].Proceedings of SPIE-The International Society for Optical Engineering, 1976, 74: 225-233.

[17] Lane R G. Simulation of a Kolmogorov phase screen[J].Waves in Random Media, 1992, 2(3): 209-224.

[18] 张慧敏, 李新阳. 大气湍流畸变相位屏的数值模拟方法研究[J]. 光电工程, 2006, 33(1): 14-19.

    Zhang Huimin, Li Xinyang. Numeircal simulation of wavefront phase screen distorted by atmospheric turbulence[J].Opto-Electronic Engineering, 2006, 33(1): 14-19(in Chinese).

[19] 钱仙妹. 长程非均匀湍流路径激光大气传播的数值模拟研究[D]. 合肥:中国科学院合肥物质科学研究院博士论文, 2008.

    Qian Xianmei.Numerical Simulation of Laser Propagating Through Long Path in Inhomogeneous Turbulent Atmosphere[D]. Hefei: Doctorial Dissertation of Hefei Institute of Physical Science, Chinese Academy of Sciences(in Chinese).

[20] Andrews L C, Phillips R L, Hopen C Y.Laser Beam Scintillation with Applications[M]. Bellingham: SPIE Press, 2001.

[21] Phillips R L.Laser Beam Propagation Through Random Media[M]. 2nd ed. Bellingham: SPIE Press, 2005.

[22] Flatté S M, Bracher C, Wang G Y. Probability-density functions of irradiance for waves inatmospheric turbulence by numerical simulation: erratum[J]. Journal of the Optical Society of America A, 1994, 11(7): 2080-2092.

[23] Chao Liu. Performance evaluation of adaptive optics for atmospheric coherent laser communications[J].Optics Express, 2014, 22(13): 15554-15563.

[24] Govind P. Agrawalauth.Fiber-Optic Communication Systems[M]. 4th ed. New York: WILEY, 2010.

周玉松, 梅海平, 王钰茹. 大气湍流影响星地相干激光通信的数值仿真[J]. 大气与环境光学学报, 2018, 13(4): 258. ZHOU Yusong, MEI Haiping, Wang Yuru. Numerical Simulation of Influence of Atmospheric Turbulence on Satellite-to-Ground Coherent Laser Communication[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(4): 258.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!