红外与毫米波学报, 2019, 38 (5): 662, 网络出版: 2019-11-19  

太赫兹二次谐波回旋振荡器时域多模分析

Multimode time domain analysis of terahertz second harmonic cyclotron oscillator
王雪微 1,2薛谦忠 1,2,*张珊 1,2赵国慧 1,2刘高峰 1,2
作者单位
1 中国科学院高功率微波源与技术国防重点实验室,北京 100400
2 中国科学院大学电子电气与通信工程学院,北京 100039
摘要
推导了时域多模公式并结合频域单模理论对 394 GHz二次谐波回旋管进行了模式激励及模式互作用分析。当工作电压为 15 kV,工作磁场为 7. 185 T,在频域单模稳态计算中 TE2 工作模工作电流为 0. 25 A时,261-不能起振,式 TE2 时域多模仿真结果显示 TE2 261-均能在 393. 87 GH稳定振荡, TE261 +2 在最终振荡中261 +达到稳定振荡; 261 +和 TE2 占主导地位,其输出功率和效率分别为 136. 8 W、3. 6 %,两者获得的工作模式的输出特性完全吻合。
Abstract
This paper derived time domain multimode formula and combined it with the frequency single modetheoryto investigate mode oscillation and mode interaction of a 394 GHz gyrotron. The gyrotron reaches a TE2261+ and TE2261- modes oscillate at 393.87 GHz in time domain theory while TE2261- cannot oscillate in frequency domain theory when the beam voltage is 15 kV, the magnetic field is 7.185 T, and beam current is 0.25 A. TE2261+ mode dominates the final oscillation, which output power and efficiency are 136.8 W and 3.6%, respectively. The output characteristics of the operating mode obtained by two theories are identical.
参考文献

[1] Lino R Becerra, Gary J Gerfen, Richard J Temkin, et al. Dynamic nuclear polarization with a cyclotron resonance ma-ser at 5 T[J]. PHYSICAL REVIEW LETERS, 1993, 71: 3561.

[2] Mudiganti J C. Scientific Report of Research Center for De-velopment of Far-Infrared Region, University of Fukui 2011: 101-112.

[3] LEI Lei, LIU Di-Wei, YAN Yang. Continuous frequency tunable 0. 42 GHz coaxial gyrotron[J]. J. Infrared Millim.Waves, 2013, 32 (6):560-562.

[4] Kao S H, Chiu C C, Pao K F, et al. Competition between Harmonic Cyclotron Maser Interactions in the Terahertz Re-gime[J]. Physical Review Letters, 2011,107 :135101.

[5] Kao S H, Chiu C C, Chang P C, ei al. Harmonic mode competition in a terahertz gyrotron backward-wave oscillator[J]. Physis of Plasmas, 2012, 19:103103.

[6] Fliflet A W, Read Μ E, CHU K R, ei al. A self-consistent field theory for gyrotron oscillators: application to a low Q gyromonotron[J], INT. J. ELECTRONICS, 1982, 53: 505.

[7] Fliflet AW, Lee RC, Gold SH, et al. Time-dependent mul-timode simulation of gyrotron oscillators[J]. PHYSICAL REVIEW A,1991, 43(11):6166-6176.

[8] Zhao Q X, Yu S, Li X, et al. Theoretical study on mode competition between fundamental and second harmonic modes in a 0.42 THz gyrotron with gradually tapered com-plex cavity[J]. Physics Of Plasmas, 2015,22: 114.

[9] Nusinovich G S. Introduction to the Physics of Gyrotrons[Μ]. B altimore - London: Johns Hopkins University Press, 2004: 47-69.

[10] Yeddulla M, Nusinovich G S, Antonsen T M Jr. Start cur-rent in an overmoded eyrotron[J i. Physics o f Plasmas, 2003, 10(11): 4513.

[11] Nusinovich G S, Pu R F, Granatstein V L. Suppression and nonlinear excitation of parasitic modes in second har-monic gyrotrons operating in a very high order mode[J]. Applied Physics Letters, 2015,107: 013501.

[12] Gregory S. Nusinovich, Oleksandr V. Sinitsyn, Leonid Velikovich, et al. Startup Scenarios in High-Power Gyro-trons[J]. IEEE Transaction on Plasma Science, 2004, 32(3): 841.

王雪微, 薛谦忠, 张珊, 赵国慧, 刘高峰. 太赫兹二次谐波回旋振荡器时域多模分析[J]. 红外与毫米波学报, 2019, 38(5): 662. WANG Xue-Wei, XUE Qian-Zhong, ZHANG Shan, ZHAO Guo-Hui, LIU Gao-Feng. Multimode time domain analysis of terahertz second harmonic cyclotron oscillator[J]. Journal of Infrared and Millimeter Waves, 2019, 38(5): 662.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!