Frontiers of Optoelectronics, 2011, 4 (2): 204, 网络出版: 2012-09-21  

Review of fiber Bragg grating sensor technology

Review of fiber Bragg grating sensor technology
作者单位
Key Laboratory of Opto-Electronic Information and Technology, Ministry of Education, Institute of Modern Optics, Nankai University, Tianjin 300071, China
摘要
Abstract
The current status of the fiber Bragg grating (FBG) sensor technology was reviewed. Owing to their salient advantages, including immunity to electromagnetic interference, lightweight, compact size, high sensitivity, large operation bandwidth, and ideal multiplexing capability, FBG sensors have attracted considerable interest in the past three decades. Among these sensing physical quantities, temperature and strain are the most widely investigated ones. In this paper, the sensing principle of FBG sensors was briefly introduced first. Then, we reviewed the status of research and applications of FBG sensors. As very important for industrial applications, multiplexing and networking of FBG sensors had been introduced briefly. Moreover, as a key technology, the wavelength interrogation methods were also reviewed carefully. Finally, we analyzed the problems encountered in engineering applications and gave a general review on the development of interrogation methods of FBG sensor.
参考文献

[1] Lee B. Review of the present status of optical fiber sensors. Optical Fiber Technology, 2003, 9(2): 57-79

[2] Rao Y J. In-fibre Bragg grating sensor. Measurement Science & Technology, 1997, 8(4): 355-375

[3] Othonos A. Fiber Bragg gratings. Review of Scientific Instruments, 1997, 68(12): 4309-4341

[4] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview. Journal of Lightwave Technology, 1997, 15(8): 1263-1276

[5] Rao Y J. Fiber Bragg grating sensors: principles and applications. In: Grattan K T V, Meggitt B T, eds. Optical Fiber Sensor Technology, 1998, 2: 355-389

[6] Shu X W, Liu Y, Zhao D H, Gwandu B, Floreani F, Zhang L, Bennion I. Dependence of temperature and strain coefficients on fiber grating type and its application to simultaneous temperature and strain measurement. Optics Letters, 2002, 27(9): 701-703

[7] Kersey A D, Davis M A, Patrick H J, LeBlanc M, Koo K P, Askins C G, Putnam M A, Friebele E J. Fiber grating sensors. Journal of Lightwave Technology, 1997, 15(8): 1442-1463

[8] Xu M G, Archambault J L, Reekie L, Dakin J P. Thermallycompensated bending gauge using surface-mounted fiber gratings. International Journal of Optoelectron, 1994, 3(9): 281-283

[9] Dong X Y, Liu Y Q, Liu Z G, Dong X Y. Simultaneous displacement and temperature measurement with cantilever-based fiber Bragg grating sensor. Optics Communications, 2001, 192(3-6): 213-217

[10] Patrick H J,Williams G M, Kersey A D, Pedrazzani J R, Vengsarkar A M. Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination. IEEE Photonics Technology Letters, 1996, 8(9): 1223-1225

[11] Guan B O, Tam H Y, Tao X M, Dong X Y. Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating. IEEE Photonics Technology Letters, 2000, 12(6): 675-677

[12] Dong X Y, Yang X F, Zhao C L, Ding L, Shum P, Ngo N Q. A novel temperature-insensitive fiber Bragg grating sensor. Smart Materials and Structures, 2005, 14(2): N7-10

[13] Song M, Lee B, Lee S B, Choi S S. Interferometric temperatureinsensitive strain measurement with different-diameter fiber Bragg gratings. Optics Letters, 1997, 22(11): 790-792

[14] Frazao O, Carvalho J P, Ferreira L A, Marques L, Araujo F M, Santos J L. Discrimination of strain and temperature using Bragg grating in microstrctured and standard optical fibers. Measurement Science and Technology, 2005, 16(10): 2109-2113

[15] Chuang K C, Ma C C. Pointwise fiber Bragg grating displacement sensor system for dynamic measurements. Applied Optics, 2008, 47(20): 3561-3567

[16] Niewczas P, Dziuda L, Fusie G, McDonald J R. Temperature compensation for a piezoelectric fiber-optic voltage sensor. In: Proceedings of IMTC 2006 - Instrumentation and Measurement Technology Conference. 2006, 1994-1998

[17] Fusick G, Niewczas P, Dziuda L, McDonald J R. Hysteresis compensation for a piezoelectric fiber-optic voltage sensor. Optical Engineering, 2005, 44(11): 345-348

[18] Liu B, Niu W, Yang Y, Luo J, Cao Y, Kai G, Zhang W, Dong X. A novel fiber Bragg grating accelerometer. Chinese Journal of Scientific Instrument, 2006, 27(1): 42-44 (in Chinese)

[19] Bao H, Dong X, Shao L Y, Zhao C L, Chan C C, Shum P. Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings. IEEE Photonics Technology Letters, 2010, 22(12): 863-865

[20] Li HM, Gao HW, Liu B, Luo J H, Kai G Y, Yuan S Z, Dong X Y. A novel fiber Bragg grating flowmeter. Chinese Journal of Sensors and Actuators, 2006, 19(4): 1195-1197 (in Chinese)

[21] Sato H, Watanabe K L. Experimental study on the use of a vortex whistle as a flowmeter. Instrumentation and Measurement, 2000, 49(1): 200-205

[22] Lee K O, Chiang K S, Chen Z H. Temperature-insensitive fiber-Bragg-grating-based vibration sensor. Optical Engineering, 2001, 40(11): 2582-2585

[23] Takahashi N, Yoshimura K, Takahashi S. Detection of ultrasonic mechanical vibration of a solid using fiber Bragg grating. Japanese Journal of Applied Physics, 2000, 39: 3134-3138

[24] Zhang W G, Liu Y G, Kai G Y, Zhao Q D, Yuan S Z, Dong X Y. A novel independent tuning technology of center wavelength and bandwidth of fiber Bragg grating. Optics Communications, 2003, 216(4-6): 343-350

[25] Gwandu B A L, Zhang L, Chisholm K, Shu X, Bennion I. Compact FBG array structure for high spatial resolution distributed strain sensing. Measurement Science & Technology, 2001, 12(7): 918-921

[26] Vohra S T, Todd M D, Johnson G A, Chang C C, Danver B A. Fiber Bragg grating sensor system for civil structure monitoring: applications and field tests. Proceedings of SPIE, 1999, 3746: 32-37

[27] <

    参考文献原文>Weis R S, Kersey A D, Berkoff T A. A four-element fiber grating sensor array with phase-sensitive detection. IEEE Photonics Technology Letters, 1994, 6(12): 1469-1472

    Henderson P J, Webb D J, Jackson D A, Zhang L, Bennion I. Highly-multiplexed grating-sensors for temperature-referenced quasi-static measurements of strain in concrete bridges. Proceedings of SPIE, 1999, 3746: 320-323

[28] Optical Fiber Sensor Technology. Vol. 2. London: Chapman & Hall, 1998, 355-389

[29] Andreas O, Kyriacos K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Boston, MA: Artech House, 1999

[30] Ashoori R, Gebrmichal Y M, Xiao S, Kemp J, Grattan K T V, Palmer A W. Time domain multiplexing for Bragg grating strain measurement sensor network. Proceedings of SPIE, 1998, 3746: 308-311

[31] Yao Y, Yi B S, Xiao J S. Research progress in wavelength demodulation technology of fiber Bragg grating sensors. Optical Communication Technology, 2007, 31(11): 41-45 (in Chinese)

[32] Koo K P, Kersey A D. Bragg grating based laser sensor system with interferometric interrogation and wavelength division multiplexing. Journal of Lightwave Technology, 1995, 13(7): 1243-1249

[33] Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Optics Letters, 1993, 18(16): 1370-1372

[34] Kim H S, Yun S H, Kwang I K, Kim B Y. All-fiber acousto-optic tunable notch filter with electronically controllable spectral profile. Optics Letters, 1997, 22(19): 1476-1478

[35] Ball G A, Morey W W, Cheo P K. Fiber laser source/analyzer for Bragg grating sensor array interrogation. Journal of Lightwave Technology, 1994, 12(4): 700-703

[36] Chen G, Xiao H, Huang Y, Zhang Y, Zhou Z. Simultaneous strain and temperature measurement using long-period fiber grating sensors. Proceedings of SPIE, 2010, 7649: 343-346

[37] Kersey A D, Morey W W. Multiplexed Bragg grating fibre-laser strain-sensor system with mode-locked interrogation. Electronics Letters, 1993, 29(1): 112-114

[38] Yun S H, Richardson D J, Kim B Y. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. Optics Letters, 1998, 23(11): 843-845

[39] Jáuregui C, Quintela A, López-Higuera J M. Interrogation unit for fiber Bragg grating sensors that uses a slanted fiber grating. Optics Letters, 2004, 29(7): 676-678

[40] Xia H Y, Wang C, Sebastien B, Yao J P. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-totime mapping incorporating higher order dispersion. Journal of Lightwave Technology, 2010, 28(3): 224-261

[41] Jung E J, Kim C S, Jeong M Y, Kim M K, Jeon M Y, Jung W, Chen Z P. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser. Optics Express, 2008, 16(21): 16552-16560

[42] Gagliardi G, Salza M, Ferraro P, De Natale P. Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation. Optics Express, 2005, 13(7): 2377-2384

[43] Sano Y, Yoshino T. Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors. Journal of Lightwave Technology, 2003, 21(1): 132-139

[44] Song M, Yin S, Ruffin P B. Fiber Bragg grating strain sensor demodulation with quadrature sampling of a mach-zehnder interferometer. Applied Optics, 2000, 39(7): 1106-1111

Jinjie CHEN, Bo LIU, Hao ZHANG. Review of fiber Bragg grating sensor technology[J]. Frontiers of Optoelectronics, 2011, 4(2): 204. Jinjie CHEN, Bo LIU, Hao ZHANG. Review of fiber Bragg grating sensor technology[J]. Frontiers of Optoelectronics, 2011, 4(2): 204.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!