Photonics Research, 2018, 6 (7): 07000713, Published Online: Jul. 4, 2018   

Parametric amplification of Rydberg six- and eight-wave mixing processes

Author Affiliations
Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049, China
Copy Citation Text

Zhaoyang Zhang, Ji Guo, Bingling Gu, Ling Hao, Gaoguo Yang, Kun Wang, Yanpeng Zhang. Parametric amplification of Rydberg six- and eight-wave mixing processes[J]. Photonics Research, 2018, 6(7): 07000713.

References

[1] GallagherT. F., Rydberg Atoms (Cambridge University, 1994).

[2] D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, P. L. Gould. Local blockade of Rydberg excitation in an ultracold gas. Phys. Rev. Lett., 2004, 93: 063001.

[3] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, P. Zoller. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett., 2001, 87: 037901.

[4] M. Saffman, T. G. Walker, K. Molmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 2010, 82: 2313-2363.

[5] Y. O. Dudin, A. Kuzmich. Strongly interacting Rydberg excitations of a cold atomic gas. Science, 2012, 336: 887-889.

[6] G. Günter, M. Robert-De-Saint-Vincent, H. Schempp, C. S. Hofmann, S. Whitlock, M. Weidemüller. Interaction enhanced imaging of individual Rydberg atoms in dense gases. Phys. Rev. Lett., 2012, 108: 013002.

[7] N. Somaschi, V. Giesz, L. De Santis, J. C. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Anton, J. Demory, C. Gomez, I. Sagnes, N. D. L. Kimura, A. Lemaitre, A. Auffeves, A. G. White, L. Lanco, P. Senellart. Near-optimal single-photon sources in the solid state. Nat. Photonics, 2016, 10: 340-345.

[8] S. E. Harris. Electromagnetically induced transparency. Phys. Today, 1997, 50: 36-42.

[9] M. Xiao, Y. Li, S. Jin, J. Geabanacloche. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett., 1995, 74: 666-669.

[10] A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, S. E. Harris. Efficient nonlinear frequency conversion in an all-resonant double-Λ system. Phys. Rev. Lett., 2000, 84: 5308-5311.

[11] Z. Zhang, H. Tang, I. Ahmed, N. Ahmed, G. Khan, A. Mahesar, Y. Zhang. Controlling Rydberg-dressed four-wave mixing via dual electromagnetically induced transparency windows. J. Opt. Soc. Am. B, 2016, 33: 1661-1667.

[12] C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, K. J. Weatherill. Three-photon electromagnetically induced transparency using Rydberg states. Opt. Lett., 2012, 37: 3858-3860.

[13] E. Brekke, J. O. Day, T. G. Walker. Four-wave mixing in ultracold atoms using intermediate Rydberg states. Phys. Rev. A, 2008, 78: 063830.

[14] Z. Zhang, J. Che, D. Zhang, Z. Liu, X. Wang, Y. Zhang. Eight-wave mixing process in a Rydberg-dressing atomic ensemble. Opt. Express, 2015, 23: 13814-13822.

[15] Y. Zhang, U. Khadka, B. Anderson, M. Xiao. Temporal and spatial interference between four-wave mixing and six-wave mixing channels. Phys. Rev. Lett., 2009, 102: 013601.

[16] A. Kölle, G. Epple, H. Kübler, R. Löw, T. Pfau. Four-wave mixing involving Rydberg states in thermal vapor. Phys. Rev. A, 2012, 85: 063821.

[17] H. B. Zheng, X. Yao, Z. Y. Zhang, J. L. Che, Y. Q. Zhang, Y. P. Zhang, M. Xiao. Blockaded six- and eight-wave mixing processes tailored by electromagnetically induced transparency scissors. Laser Phys., 2014, 24: 045404.

[18] M. D. Lukin, A. B. Matsko, M. Fleischhauer, M. O. Scully. Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence. Phys. Rev. Lett., 1999, 82: 1847-1850.

[19] T. Peyronel, O. Firstenberg, Q. Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, V. Vuletić. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature, 2012, 488: 57-60.

[20] V. Boyer, A. M. Marino, R. C. Pooser, P. D. Lett. Entangled images from four-wave mixing. Science, 2008, 321: 544-547.

[21] Z. Bai, G. Huang. Enhanced third-order and fifth-order Kerr nonlinearities in a cold atomic system via Rydberg-Rydberg interaction. Opt. Express, 2016, 24: 4442-4461.

[22] Z. Zhang, H. Zheng, X. Yao, Y. Tian, J. Che, X. Wang, D. Zhu, Y. Zhang, M. Xiao. Phase modulation in Rydberg dressed multi-wave mixing processes. Sci. Rep., 2015, 5: 10462.

[23] Z. Zhang, F. Wen, J. Che, D. Zhang, C. Li, Y. Zhang, M. Xiao. Dressed gain from the parametrically amplified four-wave mixing process in an atomic vapor. Sci. Rep., 2015, 5: 15058.

[24] Y. Zhang, M. Belić, Z. Wu, H. Zheng, K. Lu, Y. Li, Y. Zhang. Soliton pair generation in the interactions of Airy and nonlinear accelerating beams. Opt. Lett., 2013, 38: 4585-4588.

[25] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441: 960-963.

[26] J. K. Thompson, J. Simon, H. Loh, V. Vuletic. A high-brightness source of narrowband, identical-photon pairs. Science, 2006, 313: 74-77.

[27] Y. P. Zhang, A. W. Brown, M. Xiao. Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys. Rev. Lett., 2007, 99: 123603.

[28] M. H. Rubin, D. N. Klyshko, Y. H. Shih, A. V. Sergienko. Theory of two-photon entanglement in type-II optical parametric down-conversion. Phys. Rev. A, 1994, 50: 5122-5133.

[29] J. M. Wen, M. H. Rubin. Transverse effects in paired-photon generation via an electromagnetically induced transparency medium. II. Beyond perturbation theory. Phys. Rev. A, 2006, 74: 023809.

[30] C. F. McCormick, A. M. Marino, V. Boyer, P. D. Lett. Strong low-frequency quantum correlations from a four-wave-mixing amplifier. Phys. Rev. A, 2008, 78: 043816.

[31] R. C. Pooser, B. Lawrie. Plasmonic trace sensing below the photon shot noise limit. ACS Photon., 2015, 3: 8-13.

[32] R. C. Pooser, B. Lawrie. Ultrasensitive measurement of microcantilever displacement below the shot-noise limit. Optica, 2015, 2: 393-399.

[33] F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Y. Ou, W. Zhang. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun., 2014, 5: 3049.

[34] J. A. Sedlacek, A. Schwettmann, H. Kübler, R. Löw, T. Pfau, J. P. Shaffer. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances. Nat. Phys., 2012, 8: 819-824.

[35] P. P. Herrmann, J. Hoffnagle, N. Schlumpf, V. L. Telegdi, A. Weis. Stark spectroscopy of forbidden two-photon transitions: a sensitive probe for the quantitative measurement of small electric fields. J. Phys. B, 1986, 19: 1271-1280.

[36] MukamelS., Principles of Nonlinear Optical Spectroscopy (Oxford University, 1995).

[37] H. Zheng, X. Zhang, Z. Zhang, Y. Tian, H. Chen, C. Li, Y. Zhang. Parametric amplification and cascaded-nonlinearity processes in common atomic system. Sci. Rep., 2013, 3: 1885.

[38] H. Chen, Y. Zhang, X. Yao, Z. Wu, X. Zhang, Y. Zhang, M. Xiao. Parametrically amplified bright-state polariton of four-and six-wave mixing in an optical ring cavity. Sci. Rep., 2014, 4: 3619.

[39] Y. Li, G. Huang, D. Zhang, Z. Wu, Y. Zhang, J. Che, Y. Zhang. Density control of dressed four-wave mixing and super-fluorescence. IEEE J. Quantum Electron., 2014, 50: 25-34.

[40] J. Che, J. Ma, H. Zheng, Z. Zhang, X. Yao, Y. Zhang, Y. Zhang. Rydberg six-wave mixing process. Europhys. Lett., 2015, 109: 33001.

[41] Y. P. Zhang, P. Y. Li, H. B. Zheng, Z. G. Wang, H. X. Chen, C. B. Li, R. Zhang, Y. Zhang. Observation of Autler-Townes splitting in six-wave mixing. Opt. Express, 2011, 19: 7769-7777.

[42] P. Li, H. Zheng, Y. Zhang, J. Sun, C. Li, G. Huang, Z. Zhang, Y. Li, Y. Zhang. Controlling the transition of bright and dark states via scanning dressing field. Opt. Mater., 2013, 35: 1062-1070.

Zhaoyang Zhang, Ji Guo, Bingling Gu, Ling Hao, Gaoguo Yang, Kun Wang, Yanpeng Zhang. Parametric amplification of Rydberg six- and eight-wave mixing processes[J]. Photonics Research, 2018, 6(7): 07000713.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!