光子学报, 2017, 46 (4): 0406003, 网络出版: 2017-05-03   

基于腐蚀光纤的温度及葡萄糖溶液浓度传感器

A Temperature and Glucose Solution Concentration Sensor Based on Etched Optical Fiber
作者单位
武汉理工大学 光纤传感技术国家工程实验室, 武汉 430070
摘要
提出并制备了一种基于本征倏逝波原理的温度及葡萄糖溶液浓度传感器.通过研究腐蚀包层厚度与透射光谱之间的关系, 确定较为合适的腐蚀厚度.将标准单模光纤包层腐蚀至2.4 μm, 利用光纤倏逝波对外界介质变化敏感的原理, 通过测量输出光功率的变化量实现温度及葡萄糖溶液浓度传感.实验结果表明:传感器在10~70 ℃的温度范围内具有9.58×10-3 dBm/℃的灵敏度, 线性度达到99.36%; 在葡萄糖溶液0~3%的浓度范围内具有0.126 dBm/(g/L)的灵敏度, 线性度达到97.95%.该传感器的响应时间小于30 s, 具有操作简便、测量准确度高、重复性好、适用范围广等优点, 具备良好的应用价值.
Abstract
A temperature and glucose solution concentration sensor based on intrinsic evanescent wave was proposed and fabricated. By studying on the relationship between the thickness of etched fiber coating and the output spectrum, the suitable etching thickness was determined. The cladding of a standard single-mode optical fiber was etched to 2.4 μm, and the temperature and glucose solution concentration sensing were realized by measuring the variation of output optical power, because optical fiber evanescent wave is extremely sensitive to the change of external medium. The experimental results show that the sensor has temperature sensitivity of 9.58×10-3 dBm/°C at the range of 10~70 °C with linearity as high as 99.36% and glucose solution concentration sensitivity of 0.126 dBm/(g/L) at the concentration range of 0~3% with linearity of 97.95%. The response time of the sensor is less than 30 s. The sensor has advantages of simple operation, high accuracy, good reproducibility and wide application range, thus has potential application value.
参考文献

[1] 许宏志, 楼俊, 徐贲, 等. 高灵敏度分段结构光纤倏逝波传感器[J]. 光电子·激光, 2014, 25(11): 2060-2066.

    XU Hong-zhi, LOU Jun, XU Ben, et al. High-sensitivity segmented structure optic fiber evanescent wave sensor[J]. Journal of Optoelectronics · Laser, 2014, 25(11): 2060-2066.

[2] GASTON A, LOZANO I, PEREZ F, et al. Evanescent wave optical-fiber sensing (temperature, relative humidity, and pH sensors)[J]. IEEE Sensors Journal, 2003, 3(6): 806-811.

[3] ANEESH R, KHIJWANIA S K. Zinc oxide nanoparticle-doped nanoporoussolgel fiber as a humidity sensor with enhanced sensitivity and large linear dynamic range[J]. Applied Optics, 2013, 52(22): 5493-5499.

[4] 沈涛, 冯月, 代海龙, 等. 基于光纤倏逝波传感器的磁场检测[J]. 光学学报,2015, 35(7): s106003.

    SHEN Tao, FENG Yue, DAI Hai-long, et al. Measurement of magnetic field based on optical fiber evanescent wave sensor[J]. Acta Optica Sinica, 2015, 35(7): s106003.

[5] HENNING P E, GEISSINGER P. Application of time-correlated single photon counting and stroboscopic detection methods with an evanescent-wave fibre-optic sensor for fluorescence-lifetime-based pH measurements[J]. Measurement Science and Technology, 2012, 23(4): 045104.

[6] XIONG Y, HUANG Y, YE Z B, et al. Flow injection small-volume fiber-optic pH sensor based on evanescent wave excitation and fluorescence determination[J]. Journal of Fluorescence, 2011, 21(3): 1137-1142.

[7] GRAVINA R, TESTA G, BERMINI R. Perfluorinated plastic optical fiber tapers for evanescent wave sensing[J]. Sensors, 2009, 9(12): 10423-10433.

[8] SCHULTZ A M, BROWN T D, BURI M P, et al. High temperature fiber-optic evanescent wave hydrogen sensors using La-doped SrTiO3 for SOFC applications[J]. Sensors and Actuators B: Chemical, 2015, 221: 1307-1313.

[9] XIONG Y, ZHU D Q, DUAN C F, et al. Small-volume fiber-optic evanescent-wave absorption sensor for nitrate determination[J]. Analytical and Bioanalytical Chemistry, 2010, 396(2): 943-948.

[10] LONG F, HE M, SHI H C, et al. Development of evanescent wave all fiber immunosensor for environmental water analysis[J]. Biosensors and Bioelectronics, 2008, 23(7): 952-958.

[11] OHODNICKI P R, BALTRUS J P, BROWN T D. Pd/SiO2 and AuPd/SiO2 nanocomposite-based optical fiber sensors for H2 sensing applications[J]. Sensors and Actuators B: Chemical, 2015, 214: 159-168.

[12] 刘宏亮, 杨明红, 代吉祥, 等. 基于钯及其复合膜的光纤氢气传感器特性研究[J]. 光学学报, 2010, 30(12): 3398-3042.

    LIU Hong-liang, YANG Ming-hong, DAI Ji-xiang, et al. Research on characteristic of fiber optic hydrogen sensor based on palladium and its composite films[J]. Acta Optica Sinica, 2010, 30(12): 3398-3042.

[13] SNYDER A W, LOVE J D. Optical waveguide theory[M]. New York: Chapman and Hall, 1983: 120-127, 666-690.

[14] 李学金, 于永芹,洪学明,等. 基于液体填充的光子晶体光纤温度传感特性分析[J]. 中国激光, 2009, 36(5): 1140-1144.

    LI Xue-jin, YU Yong-qin, HONG Xue-ming, et al. Analysis on temperature sensing properties of photonic crystal fiber based on liquid filling[J]. Chinese Journal of Lasers, 2009, 36(5): 1140-1144.

[15] 邓孺孺, 何颖清, 秦雁, 等. 近红外波段(900-2500 nm)水吸收系数测量[J]. 遥感学报, 2012, 16(1): 192-206.

    DENG Ru-ru, HE Ying-qing, QIN Yan, et al. Measuring pure water absorption coefficient in the near-infrared spectrum(900-2500 nm)[J]. Journal of Remote Sensing, 2012, 16(1): 192-206.

[16] 胡超, 竺哲欣, 竺江峰. 用光拍法研究葡萄糖溶液密度和折射率的关系[J]. 大学物理实验, 2012, 25(6): 3-5.

    HU Chao, ZHU Zhe-xin and ZHU Jiang-feng. Using light beat method study on the relationship between density and refractive index of the glucose solution[J]. Physical Experiment of College, 2012, 25(6): 3-5.

马健, 郑羽, 余海湖. 基于腐蚀光纤的温度及葡萄糖溶液浓度传感器[J]. 光子学报, 2017, 46(4): 0406003. MA Jian, ZHENG Yu, YU Hai-hu. A Temperature and Glucose Solution Concentration Sensor Based on Etched Optical Fiber[J]. ACTA PHOTONICA SINICA, 2017, 46(4): 0406003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!