激光与光电子学进展, 2019, 56 (11): 110003, 网络出版: 2019-06-13   

基于光谱烧孔效应的激光稳频技术研究与进展 下载: 1705次

Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect
作者单位
1 中国科学院理化技术研究所功能晶体与激光技术重点实验室激光物理与技术研究中心, 北京 100190
2 中国计量科学研究院时间频率计量研究所, 北京 100029
引用该论文

韩琳, 林弋戈, 杨晶, 蓝英杰, 李烨, 王小军, 薄勇, 彭钦军. 基于光谱烧孔效应的激光稳频技术研究与进展[J]. 激光与光电子学进展, 2019, 56(11): 110003.

Lin Han, Yige Lin, Jing Yang, Yingjie Lan, Ye Li, Xiaojun Wang, Yong Bo, Qinjun Peng. Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110003.

参考文献

[1] PollnauM, Bernhardi EH, WorhoffK, et al. Dual-wavelength narrow-linewidth lasers and their applications[C]∥Advanced Solid State Lasers, October 27 - November 01, 2013, Paris. Washington D. C.: Optical Society of America, 2013: ATu1A. 6.

    PollnauM, Bernhardi EH, WorhoffK, et al. Dual-wavelength narrow-linewidth lasers and their applications[C]∥Advanced Solid State Lasers, October 27 - November 01, 2013, Paris. Washington D. C.: Optical Society of America, 2013: ATu1A. 6.

[2] BeckerA, SichkovskyiV, RippienA, et al. InP-based narrow-linewidth widely tunable quantum dot laser device for high-capacity coherent optical communication[C]∥Photonic Networks; 18. ITG-Symposium, May 11-12, 2017, Leipzig, Germany. New York: IEEE, 2017, 18: 134- 136.

    BeckerA, SichkovskyiV, RippienA, et al. InP-based narrow-linewidth widely tunable quantum dot laser device for high-capacity coherent optical communication[C]∥Photonic Networks; 18. ITG-Symposium, May 11-12, 2017, Leipzig, Germany. New York: IEEE, 2017, 18: 134- 136.

[3] Bernhardi E H, de Ridder R M, Wörhoff K, et al. . Rare-earth-ion-doped ultra-narrow-linewidth lasers on a silicon chip and applications to intra-laser-cavity optical sensing[J]. Proceedings of SPIE, 2013, 8599: 859909.

    Bernhardi E H, de Ridder R M, Wörhoff K, et al. . Rare-earth-ion-doped ultra-narrow-linewidth lasers on a silicon chip and applications to intra-laser-cavity optical sensing[J]. Proceedings of SPIE, 2013, 8599: 859909.

[4] Chen H Q, Jiang Y Y, Bi Z Y, et al. Progress and trend of narrow-linewidth lasers[J]. Science China Technological Sciences, 2013, 56(7): 1589-1596.

    Chen H Q, Jiang Y Y, Bi Z Y, et al. Progress and trend of narrow-linewidth lasers[J]. Science China Technological Sciences, 2013, 56(7): 1589-1596.

[5] 沈辉, 李刘锋, 陈李生. 超窄线宽激光: 激光稳频原理及其应用[J]. 物理, 2016, 45(7): 441-448.

    沈辉, 李刘锋, 陈李生. 超窄线宽激光: 激光稳频原理及其应用[J]. 物理, 2016, 45(7): 441-448.

    Shen H, Li L F, Chen L S. Lasers with ultra-narrow linewidth: theories and applications of laser frequency stabilization[J]. Physics, 2016, 45(7): 441-448.

    Shen H, Li L F, Chen L S. Lasers with ultra-narrow linewidth: theories and applications of laser frequency stabilization[J]. Physics, 2016, 45(7): 441-448.

[6] Cao J, Zhang P, Shang J, et al. A compact, transportable single-ion optical clock with 7.8×10 -17 systematic uncertainty [J]. Applied Physics B, 2017, 123(4): 112.

    Cao J, Zhang P, Shang J, et al. A compact, transportable single-ion optical clock with 7.8×10 -17 systematic uncertainty [J]. Applied Physics B, 2017, 123(4): 112.

[7] Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701.

    Ludlow A D, Boyd M M, Ye J, et al. Optical atomic clocks[J]. Reviews of Modern Physics, 2015, 87(2): 637-701.

[8] Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10 -15[J]. Optics Letters, 2007, 32(6): 641-643.

    Ludlow A D, Huang X, Notcutt M, et al. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1×10 -15[J]. Optics Letters, 2007, 32(6): 641-643.

[9] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692.

    Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692.

[10] Weng W L, Anstie J D, Stace T M, et al. Nano-Kelvin thermometry and temperature control:beyond the thermal noise limit[J]. Physical Review Letters, 2014, 112(16): 160801.

    Weng W L, Anstie J D, Stace T M, et al. Nano-Kelvin thermometry and temperature control:beyond the thermal noise limit[J]. Physical Review Letters, 2014, 112(16): 160801.

[11] Notcutt M, Ma L S, Ludlow A D, et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers[J]. Physical Review A, 2006, 73(3): 031804.

    Notcutt M, Ma L S, Ludlow A D, et al. Contribution of thermal noise to frequency stability of rigid optical cavity via Hertz-linewidth lasers[J]. Physical Review A, 2006, 73(3): 031804.

[12] Häfner S, Falke S, Grebing C, et al. 8×10 -17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters, 2015, 40(9): 2112-2115.

    Häfner S, Falke S, Grebing C, et al. 8×10 -17 fractional laser frequency instability with a long room-temperature cavity [J]. Optics Letters, 2015, 40(9): 2112-2115.

[13] Cone RL, Thiel CW, Sun YC, et al. Quantum information, laser frequency stabilization, and optical signal processing with rare-earth doped materials[C]∥Laser Science, October 6-10, 2013, Orlando, Florida United States. Washington D. C.: Optical Society of America, 2013: LTu1G. 3.

    Cone RL, Thiel CW, Sun YC, et al. Quantum information, laser frequency stabilization, and optical signal processing with rare-earth doped materials[C]∥Laser Science, October 6-10, 2013, Orlando, Florida United States. Washington D. C.: Optical Society of America, 2013: LTu1G. 3.

[14] Michael J T, Lars R, Tara M F, et al. Frequency-stabilization to 6×10 -16 via spectral-hole burning [J]. Nature Photonics, 2011, 5(11): 688-673.

    Michael J T, Lars R, Tara M F, et al. Frequency-stabilization to 6×10 -16 via spectral-hole burning [J]. Nature Photonics, 2011, 5(11): 688-673.

[15] Thorpe M J, Leibrandt D R, Rosenband T. Shifts of optical frequency references based on spectral-hole burning in Eu 3+∶Y2SiO5[J]. New Journal of Physics, 2013, 15(3): 033006.

    Thorpe M J, Leibrandt D R, Rosenband T. Shifts of optical frequency references based on spectral-hole burning in Eu 3+∶Y2SiO5[J]. New Journal of Physics, 2013, 15(3): 033006.

[16] Leibrandt D R, Thorpe M J, Notcutt M, et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Optics Express, 2011, 19(4): 3471-3482.

    Leibrandt D R, Thorpe M J, Notcutt M, et al. Spherical reference cavities for frequency stabilization of lasers in non-laboratory environments[J]. Optics Express, 2011, 19(4): 3471-3482.

[17] Julsgaard B, Walther A, Kröll S, et al. Understanding laser stabilization using spectral hole burning[J]. Optics Express, 2007, 15(18): 11444-11465.

    Julsgaard B, Walther A, Kröll S, et al. Understanding laser stabilization using spectral hole burning[J]. Optics Express, 2007, 15(18): 11444-11465.

[18] RippeL, JulsgaardB, WaltherA, et al. Laser stabilization using spectral hole burning[EB/OL]. ( 2006-11-05)[2018-11-05]. https:∥arxiv.org/abs/quant-ph/0611056.

    RippeL, JulsgaardB, WaltherA, et al. Laser stabilization using spectral hole burning[EB/OL]. ( 2006-11-05)[2018-11-05]. https:∥arxiv.org/abs/quant-ph/0611056.

[19] Sellin P B, Strickland N M, Carlsten J L, et al. Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning[J]. Optics Letters, 1999, 24(15): 1038-1040.

    Sellin P B, Strickland N M, Carlsten J L, et al. Programmable frequency reference for subkilohertz laser stabilization by use of persistent spectral hole burning[J]. Optics Letters, 1999, 24(15): 1038-1040.

[20] Strickland N M, Sellin P B, Sun Y, et al. Laser frequency stabilization using regenerative spectral hole burning[J]. Physical Review B, 2000, 62(3): 1473-1476.

    Strickland N M, Sellin P B, Sun Y, et al. Laser frequency stabilization using regenerative spectral hole burning[J]. Physical Review B, 2000, 62(3): 1473-1476.

[21] Böttger T, Pryde G J, Strickland N M, et al. Semiconductor lasers stabilized to spectral holes in rare-earth crystals[J]. Optics and Photonics News, 2001, 12(12): 23.

    Böttger T, Pryde G J, Strickland N M, et al. Semiconductor lasers stabilized to spectral holes in rare-earth crystals[J]. Optics and Photonics News, 2001, 12(12): 23.

[22] Sellin P B, Strickland N M, Böttger T, et al. Laser stabilization at 1536 nm using regenerative spectral hole burning[J]. Physical Review B, 2001, 63(15): 155111.

    Sellin P B, Strickland N M, Böttger T, et al. Laser stabilization at 1536 nm using regenerative spectral hole burning[J]. Physical Review B, 2001, 63(15): 155111.

[23] Böttger T, Sun Y, Pryde G J, et al. nm[J]. Journal of Luminescence, 2001, 1536, 94/95: 565-568.

    Böttger T, Sun Y, Pryde G J, et al. nm[J]. Journal of Luminescence, 2001, 1536, 94/95: 565-568.

[24] Pryde G J, Böttger T, Cone R L, et al. Semiconductor lasers stabilized to spectral holes in rare earth crystals to a part in 1013 and their application to devices and spectroscopy[J]. Journal of Luminescence, 2002, 98(1/2/3/4): 309-315.

    Pryde G J, Böttger T, Cone R L, et al. Semiconductor lasers stabilized to spectral holes in rare earth crystals to a part in 1013 and their application to devices and spectroscopy[J]. Journal of Luminescence, 2002, 98(1/2/3/4): 309-315.

[25] Böttger T, Pryde G J, Cone R L. Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning[J]. Optics Letters, 2003, 28(3): 200-202.

    Böttger T, Pryde G J, Cone R L. Programmable laser frequency stabilization at 1523 nm by use of persistent spectral hole burning[J]. Optics Letters, 2003, 28(3): 200-202.

[26] Böttger T, Pryde G J, Thiel C W, et al. Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er 3+: LiYF4[J]. Journal of Luminescence, 2007, 127(1): 83-88.

    Böttger T, Pryde G J, Thiel C W, et al. Laser frequency stabilization at 1.5 microns using ultranarrow inhomogeneous absorption profiles in Er 3+: LiYF4[J]. Journal of Luminescence, 2007, 127(1): 83-88.

[27] Chen Q F, Troshyn A, Ernsting I, et al. Spectrally narrow, long-term stable optical frequency reference based on a Eu 3+∶Y2SiO5 crystal at cryogenic temperature [J]. Physical Review Letters, 2011, 107(22): 223202.

    Chen Q F, Troshyn A, Ernsting I, et al. Spectrally narrow, long-term stable optical frequency reference based on a Eu 3+∶Y2SiO5 crystal at cryogenic temperature [J]. Physical Review Letters, 2011, 107(22): 223202.

[28] Leibrandt D R, Thorpe M J, Chou C W, et al. Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu 3+: Y2SiO5[J]. Physical Review Letters, 2013, 111(23): 237402.

    Leibrandt D R, Thorpe M J, Chou C W, et al. Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu 3+: Y2SiO5[J]. Physical Review Letters, 2013, 111(23): 237402.

[29] Sabooni M, Li Q, Rippe L, et al. Spectral engineering of slow light, cavity line narrowing, and pulse compression[J]. Physical Review Letters, 2013, 111(18): 183602.

    Sabooni M, Li Q, Rippe L, et al. Spectral engineering of slow light, cavity line narrowing, and pulse compression[J]. Physical Review Letters, 2013, 111(18): 183602.

[30] Thiel C W, Cone R L, Böttger T. Laser linewidth narrowing using transient spectral hole burning[J]. Journal of Luminescence, 2014, 152: 84-87.

    Thiel C W, Cone R L, Böttger T. Laser linewidth narrowing using transient spectral hole burning[J]. Journal of Luminescence, 2014, 152: 84-87.

[31] Thiel C W, Böttger T, Cone R L. Rare-earth-doped materials for applications in quantum information storage and signal processing[J]. Journal of Luminescence, 2011, 131(3): 353-361.

    Thiel C W, Böttger T, Cone R L. Rare-earth-doped materials for applications in quantum information storage and signal processing[J]. Journal of Luminescence, 2011, 131(3): 353-361.

[32] Drever R W P, Hall J L, Kowalski F V, et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics Photophysics and Laser Chemistry, 1983, 31(2): 97-105.

    Drever R W P, Hall J L, Kowalski F V, et al. . Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics Photophysics and Laser Chemistry, 1983, 31(2): 97-105.

[33] Young B C, Cruz F C, Itano W M, et al. Visible Lasers with Subhertz Linewidths[J]. Physical Review Letters, 1999, 82(19): 3799-3802.

    Young B C, Cruz F C, Itano W M, et al. Visible Lasers with Subhertz Linewidths[J]. Physical Review Letters, 1999, 82(19): 3799-3802.

[34] Notcutt M, Ma L S, Ye J, et al. Simple and compact 1 Hz laser system via an improved mounting configuration of a reference cavity[J]. Optics Letters, 2005, 30(14): 1815-1817.

    Notcutt M, Ma L S, Ye J, et al. Simple and compact 1 Hz laser system via an improved mounting configuration of a reference cavity[J]. Optics Letters, 2005, 30(14): 1815-1817.

[35] Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 2006, 74(5): 053801.

    Chen L, Hall J L, Ye J, et al. Vibration-induced elastic deformation of Fabry-Perot cavities[J]. Physical Review A, 2006, 74(5): 053801.

[36] Nicholson T L, Martin M J, Williams J R, et al. Comparison of two independent Sr optical clocks with 1×10 -17 stability at 10 3 s [J]. Physical Review Letters, 2012, 109(23): 230801.

    Nicholson T L, Martin M J, Williams J R, et al. Comparison of two independent Sr optical clocks with 1×10 -17 stability at 10 3 s [J]. Physical Review Letters, 2012, 109(23): 230801.

[37] Matei D G, Legero T, Häfner S, et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 2017, 118(26): 263202.

    Matei D G, Legero T, Häfner S, et al. 1.5 μm lasers with sub-10 mHz linewidth[J]. Physical Review Letters, 2017, 118(26): 263202.

[38] Tay J W, Farr W G, Ledingham P M, et al. Hybrid optical and electronic laser locking using slow light due to spectral holes[J]. Physical Review A, 2013, 87(6): 063824.

    Tay J W, Farr W G, Ledingham P M, et al. Hybrid optical and electronic laser locking using slow light due to spectral holes[J]. Physical Review A, 2013, 87(6): 063824.

[39] Cook S, Rosenband T, Leibrandt D R. Laser-frequency stabilization based on steady-state spectral-hole burning in Eu3+∶Y2SiO5[J]. Physical Review Letters, 2015, 114(25): 253902.

    Cook S, Rosenband T, Leibrandt D R. Laser-frequency stabilization based on steady-state spectral-hole burning in Eu3+∶Y2SiO5[J]. Physical Review Letters, 2015, 114(25): 253902.

[40] Gobron O, Jung K, Galland N, et al. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals[J]. Optics Express, 2017, 25(13): 15539-15548.

    Gobron O, Jung K, Galland N, et al. Dispersive heterodyne probing method for laser frequency stabilization based on spectral hole burning in rare-earth doped crystals[J]. Optics Express, 2017, 25(13): 15539-15548.

[41] . 具有重大应用潜力的研究工具[J]. 激光与光电子学进展, 1992, 29(9): 25-25.

    . 具有重大应用潜力的研究工具[J]. 激光与光电子学进展, 1992, 29(9): 25-25.

    You Q. Spectral hole burning: a research tools with significant application potential[J]. Laser & Optoelectronics Progress, 1992, 29(9): 25-25.

    You Q. Spectral hole burning: a research tools with significant application potential[J]. Laser & Optoelectronics Progress, 1992, 29(9): 25-25.

[42] 周福新. 持久性光谱烧孔及其应用[J]. 激光与光电子学进展, 1988, 25(1): 13-15.

    周福新. 持久性光谱烧孔及其应用[J]. 激光与光电子学进展, 1988, 25(1): 13-15.

    Zhou F X. Persistence spectral hole burning and its application[J]. Laser & Optoelectronics Progress, 1988, 25(1): 13-15.

    Zhou F X. Persistence spectral hole burning and its application[J]. Laser & Optoelectronics Progress, 1988, 25(1): 13-15.

[43] 黄菁, 唐志列, 梁瑞生. 光谱烧孔技术[J]. 光学技术, 2000, 26(4): 379-382.

    黄菁, 唐志列, 梁瑞生. 光谱烧孔技术[J]. 光学技术, 2000, 26(4): 379-382.

    Huang J, Tang Z L, Niang R S. Technology of spectral hole burning[J]. Optical Technique, 2000, 26(4): 379-382.

    Huang J, Tang Z L, Niang R S. Technology of spectral hole burning[J]. Optical Technique, 2000, 26(4): 379-382.

[44] 薛绍林, 陈凌冰, 赵有源, 等. 579.62 nm波长处Y2SiO5∶Eu 3+晶体永久性光谱烧孔 [J]. 中国稀土学报, 2006, 24(4): 510-512.

    薛绍林, 陈凌冰, 赵有源, 等. 579.62 nm波长处Y2SiO5∶Eu 3+晶体永久性光谱烧孔 [J]. 中国稀土学报, 2006, 24(4): 510-512.

    Xue S L, Chen L B, Zhao Y Y, et al. Persistent spectral hole burning of Eu 3+doped Y2SiO5crystal at 579.62 nm [J]. Journal of the Chinese Rare Earth Society, 2006, 24(4): 510-512.

    Xue S L, Chen L B, Zhao Y Y, et al. Persistent spectral hole burning of Eu 3+doped Y2SiO5crystal at 579.62 nm [J]. Journal of the Chinese Rare Earth Society, 2006, 24(4): 510-512.

[45] 王伟. 基于光谱烧孔的可调谐激光器频率稳定度测量[D]. 天津: 天津理工大学, 2013.

    王伟. 基于光谱烧孔的可调谐激光器频率稳定度测量[D]. 天津: 天津理工大学, 2013.

    WangW. Measurement of tunable laser frequency stability based on spectral-hole burning[D]. Tianjin: Tianjin University of Technology, 2013.

    WangW. Measurement of tunable laser frequency stability based on spectral-hole burning[D]. Tianjin: Tianjin University of Technology, 2013.

[46] 范夏雷. 超窄线宽PDH稳频技术中的剩余幅度调制(RAM)抑制[D]. 杭州: 中国计量大学, 2016.

    范夏雷. 超窄线宽PDH稳频技术中的剩余幅度调制(RAM)抑制[D]. 杭州: 中国计量大学, 2016.

    Fan XL. Reduction of residual amplitude modulation in narrow linewidth PDH laser frequency stabilization technology[D]. Hangzhou: China University of Metrology, 2016.

    Fan XL. Reduction of residual amplitude modulation in narrow linewidth PDH laser frequency stabilization technology[D]. Hangzhou: China University of Metrology, 2016.

[47] 苏娟, 焦明星, 马源源, 等. 正交解调Pound-Drever-Hall激光稳频系统设计[J]. 中国激光, 2016, 43(3): 0316001.

    苏娟, 焦明星, 马源源, 等. 正交解调Pound-Drever-Hall激光稳频系统设计[J]. 中国激光, 2016, 43(3): 0316001.

    Su J, Jiao M X, Ma Y Y, et al. Design of pound-drever-hall laser frequency stabilization system using the quadrature demodulation[J]. Chinese Journal of Lasers, 2016, 43(3): 0316001.

    Su J, Jiao M X, Ma Y Y, et al. Design of pound-drever-hall laser frequency stabilization system using the quadrature demodulation[J]. Chinese Journal of Lasers, 2016, 43(3): 0316001.

[48] Milani G, Rauf B, Barbieri P, et al. Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[J]. Optics Letters, 2017, 42(10): 1970-1973.

    Milani G, Rauf B, Barbieri P, et al. Multiple wavelength stabilization on a single optical cavity using the offset sideband locking technique[J]. Optics Letters, 2017, 42(10): 1970-1973.

[49] 韩琳, 薄勇, 杨晶, 等. 一种可调谐稳频激光器: 107069416A[P].2017-08-18.

    韩琳, 薄勇, 杨晶, 等. 一种可调谐稳频激光器: 107069416A[P].2017-08-18.

    HanL, BoY, YangJ, et al. An adjustable frequency stabilization laser: 107069416A[P]. 2017-08-18.

    HanL, BoY, YangJ, et al. An adjustable frequency stabilization laser: 107069416A[P]. 2017-08-18.

韩琳, 林弋戈, 杨晶, 蓝英杰, 李烨, 王小军, 薄勇, 彭钦军. 基于光谱烧孔效应的激光稳频技术研究与进展[J]. 激光与光电子学进展, 2019, 56(11): 110003. Lin Han, Yige Lin, Jing Yang, Yingjie Lan, Ye Li, Xiaojun Wang, Yong Bo, Qinjun Peng. Research and Development on Laser Frequency Stabilization Based on Spectral Hole-Burning Effect[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!