Opto-Electronic Advances, 2020, 3 (5): 05190035, Published Online: Aug. 10, 2020  

Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing

Author Affiliations
1 Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion Crete 71110, Greece
2 Department of Materials Science and Technology, University of Crete, Heraklion Crete 71003, Greece
3 Department of Physics, University of Crete, Heraklion Crete 71003, Greece
Copy Citation Text

Nikolaos Livakas, Evangelos Skoulas, Emmanuel Stratakis. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing[J]. Opto-Electronic Advances, 2020, 3(5): 05190035.

References

[1] A G Dumanli, T Savin. Recent advances in the biomimicry of structural colours. Chem Soc Rev, 2016, 45: 6698-6724.

[2] C S S R Kumar. Biomimetic and Bioinspired Nanomaterials. Wiley, Weinheim, 2010.

[3] M lida, K Hagiwara, H Asakura. Holographic fourier diffraction gratings with a high diffraction efficiency optimized for optical communication systems. Appl Opt, 1992, 31: 3015-3019.

[4] E G Loewen, E Popov. Diffraction Gratings and Applications. M. Dekker, New York, 1997.

[5] F Rößler, T Kunze, A F Lasagni. Fabrication of diffraction based security elements using direct laser interference patterning. Opt Express, 2017, 25: 22959-22970.

[6] N P Mahalik. Micromanufacturing and nanotechnology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

[7] S Singh. Diffraction gratings: aberrations and applications. Opt Laser Technol, 1999, 31: 195-218.

[8] A Saito, Y Miyamura, M Nakajima, Y Sogo K Ishikawa, et al.. Reproduction of the Morpho blue by nanocasting lithography. J Vac Sci Technol B, 2006, 24: 3248-3251.

[9] K Watanabe, T Hoshino, K Kanda, Y Haruyama, S Matsui. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Jpn J Appl Phys, 2005, 44.

[10] B Dusser, Z Sagan, H Soder, N Faure, J P Colombier, et al.. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express, 2010, 18: 2913-2924.

[11] Y Tamamura, G Miyaji. Structural coloration of a stainless steel surface with homogeneous nanograting formed by femtosecond laser ablation. Opt Mater Express, 2019, 9: 2902-2909.

[12] B Voisiat, W Wang, M Holzhey, A F Lasagni. Improving the homogeneity of diffraction based colours by fabricating periodic patterns with gradient spatial period using Direct Laser Interference Patterning. Sci Rep, 2019, 9: 7801.

[13] M Birnbaum. Semiconductor surface damage produced by Ruby lasers. J Appl Phys, 1965, 36: 3688-3689.

[14] S E Clark, D C Emmony. Ultraviolet-laser-induced periodic surface structures. Phys Rev B, 1989, 40: 2031-2041.

[15] P M Fauchet, A E Siegman. Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl Phys Lett, 1982, 40: 824-826.

[16] A Y Vorobyev, C L Guo. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev, 2013, 7: 385-407.

[17] A Papadopoulos, E Skoulas, A Mimidis, G Perrakis, G Kenanakis, et al.. Biomimetic Omnidirectional Antireflective Glass via Direct Ultrafast Laser Nanostructuring. Adv. Mater, 2019, 31: 1901123.

[18] G D Tsibidis, C Fotakis, E Stratakis. From ripples to spikes: a hydrodynamical mechanism to interpret femtosecond laser-induced self-assembled structures. Phys Rev B, 2015, 92: 041405(R).

[19] A Rudenko, J P Colombier, T E Itina. From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser. Phys Rev B, 2016, 93: 075427.

[20] L Wang, B B Xu, X W Cao, Q K Li, W J Tian, et al.. Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses. Optica, 2017, 4: 637-642.

[21] J Bonse, S Höhm, S V Kirner, A Rosenfeld, J Krüger. Laser-induced periodic surface structures—A scientific evergreen. IEEE J Sel Top Quant Electron, 2017, 23: 9000615.

[22] B Öktem, I Pavlov, S Ilday, H Kalaycıoğlu, A Rybak, et al.. Nonlinear laser lithography for indefinitely large-area nanostructuring with femtosecond pulses. Nat Photonics, 2013, 7: 897-901.

[23] Y Jin, O J Allegre, W Perrie, K Abrams, J Ouyang, et al.. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt Express, 2013, 21: 25333-25353.

[24] G Q Li, J W Li, Y L Hu, C C Zhang, X H Li, et al.. Realization of diverse displays for multiple color patterns on metal surfaces. Appl Surf Sci, 2014, 316: 451-455.

[25] E Skoulas, A Manousaki, C Fotakis, E Stratakis. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep, 2017, 7: 45114.

[26] B N Chichkov, C Momma, S Nolte, F von Alvensleben, A Tünnermann. Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A, 1996, 63: 109-115.

[27] A Y Vorobyev, C L Guo. Colorizing metals with femtosecond laser pulses. Appl Phys Lett, 2008, 92: 041914.

[28] A Y Vorobyev, C L Guo. Spectral and polarization responses of femtosecond laser-induced periodic surface structures on metals. J Appl Phys, 2008, 103: 043513.

[29] G Q Li, J W Li, L Yang, X H Li, Y L Hu, et al.. Evolution of aluminum surface irradiated by femtosecond laser pulses with different pulse overlaps. Appl Surf Sci, 2013, 276: 203-209.

[30] A A Ionin, S I Kudryashov, S V Makarov, L V Seleznev, D V Sinitsyn, et al.. Femtosecond laser color marking of metal and semiconductor surfaces. Appl Phys A, 2012, 107: 301-305.

[31] M S Ahsan, F Ahmed, Y G Kim, M S Lee, M B G Jun. Colorizing stainless steel surface by femtosecond laser induced micro/nano-structures. Appl Surf Sci, 2011, 257: 7771-7777.

[32] I Gnilitskyi, T J Y Derrien, Y Levy, N M Bulgakova, T Mocek, L Orazi. High-speed manufacturing of highly regular femtosecond laser-induced periodic surface structures: physical origin of regularity. Sci Rep, 2017, 7: 8485.

[33] L Wang, Q D Chen, X W Cao, R Buividas, X W Wang, et al.. Plasmonic nano-printing: large-area nanoscale energy deposition for efficient surface texturing. Light: Sci Appl, 2017, 6: e17112.

[34] E Højlund-Nielsen, J Weirich, J Nørregaard, J Garnaes, N A Mortensen, et al.. Angle-independent structural colors of silicon. J Nanophotonics, 2014, 8: 083988.

[35] A K Yetisen, H Butt, T Mikulchyk, R Ahmed, Y Montelongo, et al.. Color-selective 2.5D holograms on large-area flexible substrates for sensing and multilevel security. Adv Opt Mater, 2016, 4: 1589-1600.

[36] J W Yao, C Y Zhang, H Y Liu, Q F Dai, L J Wu, et al.. Selective appearance of several laser-induced periodic surface structure patterns on a metal surface using structural colors produced by femtosecond laser pulses. Appl Surf Sci, 2012, 258: 7625-7632.

[37] T Jwad, P Penchev, V Nasrollahi, S Dimov. Laser induced ripples' gratings with angular periodicity for fabrication of diffraction holograms. Appl Surf Sci, 2018, 453: 449-456.

[38] J M Romano, A Garcia-Giron, P Penchev, S Dimov. Triangular laser-induced submicron textures for functionalising stainless steel surfaces. Appl Surf Sci, 2018, 440: 162-169.

[39] R Torres, T Kaempfe, M Delaigue, O Parriaux, C Hönninger, et al.. Influence of laser beam polarization on laser micro-machining of molybdenum. JLMN-J Laser Micro/Nanoeng, 2013, 8: 188-191.

[40] M Beresna, M Gecevičius, P G Kazansky, T Gertus. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett, 2011, 98: 201101.

[41] J J J Nivas, S T He, A Rubano, A Vecchione, D Paparo, et al.. Direct femtosecond laser surface structuring with optical vortex beams generated by a q-plate. Sci Rep, 2015, 5: 17929.

[42] J J J Nivas, S T He, Z M Song, A Rubano, A Vecchione, et al.. Femtosecond laser surface structuring of silicon with Gaussian and optical vortex beams. Appl Surf Sci, 2017, 418: 565-571.

[43] G D Tsibidis, E Skoulas, E Stratakis. Ripple formation on nickel irradiated with radially polarized femtosecond beams. Opt Lett, 2015, 40: 5172-5175.

[44] Hecht E. Optics 4th ed (Addison-Wesley, San Francisco, 2001).

[45] Palmer C. Diffraction Grating Handbook 6th ed (Newport Corporation, Rochester, NY, 2005).

Nikolaos Livakas, Evangelos Skoulas, Emmanuel Stratakis. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing[J]. Opto-Electronic Advances, 2020, 3(5): 05190035.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!