光子学报, 2017, 46 (8): 0811003, 网络出版: 2017-10-30  

用于X射线诊断的晶体布喇格成像系统

X-ray Backlighting Imaging Bragg Spectrometer for X-ray Diagnosis
作者单位
1 山西大同大学 物理与电子科学学院,山西 大同 037009
2 重庆大学 光电技术及系统教育部重点实验室,重庆400030
摘要
为了评估惯性约束聚变实验中激光辐射驱动的对称性和均匀性,分析靶丸的运动过程,设计一种新型诊断单色X射线的弯曲晶体布喇格成像系统,该系统核心部件由色散元件球面弯曲晶体和探测装置组成.利用光线追踪软件对该成像系统进行模拟验证,并搭建了晶体布喇格成像系统进行X射线背光成像测试实验.实验获得了清晰的Cr靶单色X射线背光二维网格信息,石英球面晶体布喇格成像系统空间分辨率为83 μm,表明该成像系统可以用于等离子体X射线的背光成像诊断.
Abstract
A novel X-ray backlighting imaging Bragg spectrometer was developed based on the Bragg diffraction theory to study and diagnose the driven symmetry and uniformity of laser radiation, analyse the promote layer motor process of target implosion of Inertial Confinement Fusion. The key component of the imaging system was the spherically bent Quartz Bragg crystal. The imaging simulation of the X-ray backlighting imaging Bragg spectrometer was studied with the ray tracing software SHADOW. The monochrome X-ray backlight imaging experiment using spherically bent Quartz Bragg crystal was used to carried out in the Chinese Academy of Engineering Physics. The imaging plate was obtained the two-dimensional, monochromatic backlight mesh imaging. By analyzing the imaging information of the experiment, the spatial resolution of the imaging Bragg spectrometer was 83 μm. The experiment show that the imaging system was adequate for X-ray backlighting imaging diagnosis..
参考文献

[1] GLENZER S H, MACGOWAN B J, MEEZAN N B,et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letter, 2011, 106(8): 085004.

[2] FUJIOKA S, FUJIWARA T, TANABE M,et al. Monochromatic X-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment[J]. Review of Scientific Instruments, 2010, 81(10): 10E529.

[3] ALKHIMOVA M A,PIKUZ S A,SKOBLEV I Y,et al. Determination of the reflectivity curve of a spherically bent mica crystal used to diagnose X-ray radiation of relativistic laser plasma[J].Bulletin of the Lebedev Physics Institute, 2016, 43(10): 291-294.

[4] BITTER M, HILL K W, STRATTON B, et al. Spatially resolved spectra from a new x-ray imaging crystal spectrometer for measurements of ion and electron temperature profiles (invited)[J]. Review of Scientific Instruments, 2004, 75(10): 3660-3665.

[5] BENNETT G R, SINARS D B, WENGER D F, et al. High-brightness, high-spatial-resolution, 6.151 keV X-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia’s Z accelerator(invited)[J]. Review of Scientific Instruments, 2006, 77(10): 10E322.

[6] SINARS D B, BENNETT G R, WENGER D F, et al. Monochromatic x-ray imaging experiments on the Sandia National Laboratories Z facility (invited)[J]. Review of Scientific Instruments, 2004, 75(10): 3672-3677.

[7] AKLI K U, KEY M H, CHUNG H K, et al. Temperature sensitivity of Cu Kα imaging efficiency using a spherical Bragg reflecting crystal[J]. Physics of Plasma, 2007, 14(2): 023102.

[8] HONKANEN A , VERBENI R, SIMONELL I , et al. Study on the reflectivity properties of spherically bent analyser crystals[J]. Corrigendum Journal of Synchrotron Rad, 2017, 24: 545-546.

[9] TURNER D C, KNIGHT L V, MENA A R, et al. Focusing crystal von hamos spectroments for XRF applications[J].Advances in X-Ray analysis, 2001, 44: 329-335.

[10] PIKUZ T, FAENOV A, SKOBELEV I, et al. High efficient X-ray imaging and backlighting schemes based on the spherically bent crystals[C]. SPIE, 2004, 5196: 362-374.

[11] WU Xin-yi, XIAO Sha-li, LU Jian,et al. Simulation and experimental research of X-ray toroidally bent crystal imaging with laser-produced plasma[J].Laser Physics, 2016, 26(4): 045701.

[12] FLORA F, BOLLANTI S, LAI A, et al. A novel portable, high-luminosity monochromatically tuneable X-ray microscope[C]. SPIE, 2001, 4504: 240-252.

[13] SCANDALE W, KOVALENKOA. D, TARATIN A M. Possibility of high efficient beam extraction from the CERN SPS with a bent crystal. Simulation results[J]. Nuclear Instruments & Methods in Physics Research, 2017, 848: 166-169.

[14] MARSHALL F J , ALLEN M M, KNAUER J P, et al . A high-resolution X-ray microscope for laser-driven planar-foil experiments[J]. Physics of Plasmas, 1998, 5(4): 1118-1124.

[15] KNAPP P F, PIKUZ S A, SHELKOVENKO T A, et al. High resolution absorption spectroscopy of exploding wire plasmas using an X-pinch X-ray source and spherically bent crystal[J].Review of Scientific Instrument, 2011, 82(6): 063501.

刘利锋, 肖沙里, 钱家渝. 用于X射线诊断的晶体布喇格成像系统[J]. 光子学报, 2017, 46(8): 0811003. LIU Li-feng, XIAO Sha-li, QIAN Jia-yu. X-ray Backlighting Imaging Bragg Spectrometer for X-ray Diagnosis[J]. ACTA PHOTONICA SINICA, 2017, 46(8): 0811003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!