液晶与显示, 2019, 34 (11): 1091, 网络出版: 2019-12-10   

基于U-Net的多图谱标签融合算法

Multi-atlaslabel fusion based on U-Net
作者单位
宁夏大学 物理与电子电气工程学院, 宁夏 银川 750021
摘要
为有效提高海马体多图谱分割算法的精度, 将U-Net卷积神经网络用于海马体MR多图谱分割的标签融合。算法在图谱选择阶段, 计算互信息、梯度相似性选择图谱, 避免周围组织结构对图谱选择的干扰, 选择与目标图谱更贴合的浮动图像组。在预处理阶段, 提取以海马体为中心的感兴趣区域有效降低数据规模。在配准过程中, 利用重采样代替粗配准环节, 减少了“粗”配准环节所需时间, 再采用具有良好的平滑性、连续性和拓扑保持性的微分同胚Demons精配准算法。在标签融合阶段, 提出基于深度学习理论改进的U-Net多图谱MRI海马体分割算法。实验结果表明, 改进的算法分割精度较于传统算法平均提高了5%, 算法时间缩短了50%左右。改进后的基于U-Net的多图谱海马体分割算法对目标图像海马体的分割具有高精度、高效率的特点。
Abstract
In order to effectively improve the accuracy of multi-atlas segmentation algorithm of hippocampus, U-Net convolutional neural network is applied to label fusion of multi-atlas. The algorithm in the atlases selection performs mutual information and gradient similarity calculation, avoids the interference of the surrounding tissue structure on the atlas selection, selects the floating image group which is more suitable for the target map. In the pre-processing stage, extracting the region of interest centered on hippocampus can effectively reduce the size of data. In the registration process, re-sampling is used instead of the coarse registration, which reduces the time, and then uses the diffeomorphic demons algorithm, which has good smoothness, continuity and topological retentiveness. In the label fusion stage, an improved U-Net network based on deep learning theory for multi-atlas MRI hippocampal segmentation algorithm is proposed. The experimental results show that the segmentation accuracy of the improved algorithm is about 5% higher than that of the traditional algorithm, the algorithm time is reduced by about 50%. The improved U-Net network based multi-atlas hippocampal segmentation algorithm has the characteristics of high precision and high efficiency for segmentation of the hippocampus in target image.
参考文献

[1] HOGAN R E, MARK K E, CHOUDHURI I,et al. Magnetic resonance imaging deformation-based segmentation of the hippocampus in patients with mesial temporal sclerosis and temporal lobe epilepsy [J]. Journal of Digital Imaging, 2000, 13(S1): 217-218.

[2] SHATTUCK D W, MIRZA M, ADISETIYO V, et al. Construction of a 3D probabilistic atlas of human cortical structures [J]. Neuroimage, 2008, 39(3): 1064-1080.

[3] JACK C R JR, BENTLEY M D, TWOMEY C K, et al. MR imaging-based volume measurements of the hippocampal formation and anterior temporal lobe: validation studies [J]. Radiology, 1990, 176(1): 205-209.

[4] KASS M, WITKIN A,TERZOPOULOS D. Snakes: active contour models [J]. International Journal of Computer Vision, 1988, 1(4): 321-331.

[5] ASHTON E A, BERG M J, PARKER K J, et al. Segmentation and feature extraction techniques, with applications to MRI head studies [J]. Magnetic Resonance in Medicine, 1995, 33(5): 670-677.

[6] KELEMEN A, SZEKELY G, GERIG G. Elastic model-based segmentation of 3-D neuroradiological data sets [J]. IEEE Transactions on Medical Imaging, 1999, 18(10): 828-839.

[7] CREMERS D. Dynamical statistical shape priors for level set-based tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(8): 1262-1273.

[8] ZHANG H Z, MORROW P, MCCLEAN S, et al. Contour detection of labelled cellular structures from serial ultrathin electron microscopy sections using GAC and prior analysis [C]//Proceedings of the 2008 1st Workshops on Image Processing Theory, Tools and Applications. Sousse: IEEE, 2008.

[9] DAMBREVILLE S, RATHI Y, TANNENBAUM A. A framework for image segmentation using shape models and kernel space shape priors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1385-1399.

[10] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015.

[11] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation [C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich: Springer, 2015: 234-241.

[12] SHATTUCK D W, LEAHY R M.BrainSuite: an automated cortical surface identification tool [J]. Medical Image Analysis, 2002, 6(2): 129-142.

[13] ALJABAR P, HECKEMANN R A, HAMMERSA, et al. Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy [J]. Neuroimage, 2009, 46(3): 726-738.

[14] AWATE S P, ZHU P H, WHITAKER R T. How many templates does it take for a good segmentation?: error analysis in multiatlas segmentation as a function of database size [C]//Proceedings of the 2nd International Workshop on Multimodal Brain Image Analysis. Nice: Springer, 2012: 103-114.

[15] 夏瑞, 马瑜, 王文娜, 等.基于重采样改进的多图谱分割算法[J].计算机工程与设计, 2018, 39(8): 2587-2592, 2659.

    XIA R, MA Y, WANG W N, et al. Multi-atlas segmentation algorithm based on resampling [J]. Computer Engineering and Design, 2018, 39(8): 2587-2592, 2659. (in Chinese)

[16] VERCAUTEREN T, PENNEC X, PERCHANT A, et al. Diffeomorphic demons: efficient non-parametric image registration [J]. Neuroimage, 2009, 45(1 Suppl): S61-S72.

[17] HUO J, WANG G H, WU Q M J, et al. Label fusion for multi-atlas segmentation based on majority voting [C]//Proceedings of the 12th International Conference Image Analysis and Recognition. Niagara Falls: Springer, 2015: 100-106.

[18] WU G R, WANG Q, ZHANG D Q, et al. A generative probability model of joint label fusion for multi-atlas based brain segmentation [J]. Medical Image Analysis, 2014, 18(6): 881-890.

[19] WARFIELD S K, ZOU K H, WELLS W M. Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation [J]. IEEE Transactions on Medical Imaging, 2004, 23(7): 903-921.

[20] COUP P, MANJN J V, FONOV V, et al. Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation [J]. NeuroImage, 2011, 54(2): 940-954.

[21] Brain-Development. Brain atlases [EB/OL]. http: //biomedic.doc.ic.ac.uk/brain-development/.

[22] Alzheimer’s Disease Neuroimaging Initiative. [EB/OL]. http: //adni.loni.usc.edu.

[23] JOHNSON H J, MCCORMICK M M, IBANEZ L. The ITK Software Guide Book 1: Introduction and Development Guidelines [M]. Kitware, Inc., 2015.

[24] LIU H, YAN M, SONG E M, et al. Label fusion method based on sparse patch representation for the brain MRI image segmentation [J]. IET Image Processing, 2017, 11(7): 502-511.

芦玥, 马瑜, 王慧, 王原. 基于U-Net的多图谱标签融合算法[J]. 液晶与显示, 2019, 34(11): 1091. LU Yue, MA Yu, WANG Hui, WANG Yuan. Multi-atlaslabel fusion based on U-Net[J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(11): 1091.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!