激光与光电子学进展, 2017, 54 (12): 121205, 网络出版: 2017-12-11   

基于LabVIEW的光时域反射仪及反射事件检测分析 下载: 753次

Optical Time Domain Reflectometry Based on LabVIEW and Detection Analysis of Reflection Events
作者单位
江南大学物联网工程学院, 江苏 无锡 214122
摘要
设计了一款基于LabVIEW的光时域反射仪(OTDR), 选用1625 nm波长的脉冲激光模块作为光源, 采用高灵敏度雪崩二极管光电探测器和高速数据采集卡, 在LabVIEW集成化虚拟仪器开发环境控制下, 对光信号进行采集、处理和数据存储, 实现光纤在线实时监控。采用数字平均与加权滑动平均相结合的算法, 对返回的背向散射信号进行降噪, 并定量分析了数字平均次数、平滑宽度、平滑类型对OTDR系统信号处理结果的影响, 从而给出一个最佳平滑模型。采用求一阶导数方法并设置导数和幅度双重阈值, 对反射事件点进行定位。采用该系统对实际光缆线路的测试结果表明, 所提出的最佳平滑滤波器与传统平滑滤波器在相同平滑宽度下相比, 动态范围提高了1.1 dB, 信噪比提高了1.25倍。所提定位算法能较准确地定位反射事件点, 表明该算法具有一定的实用价值。
Abstract
A optical time domain reflectometry (OTDR) system based on LabVIEW is designed. A 1625 nm wavelength pulsed laser module is used as the light source. The high-sensitivity avalanche diode photodetector and high-speed data acquisition card are used to collect, process and storage the optical signal under the control of the LabVIEW integrated virtual instrument development environment, in order to realize on-line real-time monitoring of fiber. An algorithm combining digital average method and weighted sliding-average is adopted to reduce the noise of the returned backscatter signal, and the effect of the digital average time, smooth width and smooth type on the result of signal processing of the OTDR system is quantitively analyzed. Then the best smooth model is given. The first derivative method is used and the double thresholds of derivative and amplitude are set to locate the point of the reflection event. The experimental results of practical optical cable line with the proposed system show that the optimal smoothing filter proposed in this paper improves the dynamic range by 1.1 dB and the signal-to-noise ratio by 1.25 times compared with the traditional smoothing filter at the same smooth width. The proposed positioning algorithm can be used to locate the point of the reflection event accurately, which indicates that the proposed algorithm has certain practical value.
参考文献

[1] Rad M M, Fouli K, Fathallah H A, et al. Passive optical network monitoring: challenges and requirements[J]. IEEE Communications Magazine, 2011, 49(2): S45-S52.

[2] 刘春桐, 李洪才, 何祯鑫, 等. 基于LabVIEW的光纤光栅自动检测及分析系统[J]. 光子学报, 2016, 45(2): 0206002.

    Liu Chuntong, Li Hongcai, He Zhenxin, et al. Design of fiber Bragg grating automatic analysis test system based on LabVIEW[J]. Acta Photonica Sinica, 2016, 45(2): 0206002.

[3] Liu F L, Zarowski C J. Detection and estimation of connection splice events in fiber optics given noisy OTDR data - Part I: GSR/MDL method[J]. IEEE Transactions on Instrumentation & Measurement, 2001, 50(1): 47-58.

[4] Liu F, Zarowski C J. Detection and location of connection splice events in fiber optics given noisy OTDR data - Part II: R1MSDE method[J]. IEEE Transactions on Instrumentation & Measurement, 2004, 53(2): 546-556.

[5] Man X, Yi D, Hao H, et al. Analysis of connection splice events in OTDR data using short Fourier transform method[J]. Chinese Journal of Scientific Instrument, 2010, 31(9): 2121-2125.

[6] Ma C, Kong H, Zhou Q, et al. Events detection in OTDR data based on a method combining correlation matching with STFT[C]. Asia Communications and Photonics Conference 2014, 2014: ATh3A.148.

[7] 易水寒, 喻杰奎, 罗清. OTDR非反射事件自适应检测算法设计与研究[J]. 光通信技术, 2014, 38(9): 59-61.

    Yi Shuihan,Yu Jiekui, Luo Qing. Design and research of self-adaptive detecting algorithm for OTDR non-reflective event[J]. Optical Communication Technology, 2014, 38(9): 59-61.

[8] 方英兰, 刘升, 沈成银, 等. 相位敏感OTDR系统的信号解调方法[J]. 量子电子学报, 2015, 32(1): 123-128.

    Fang Yinglan, Liu Sheng, Shen Chengyin, et al. Signal demodulation method of phase-sensitive optical time domain reflectometer[J]. Chinese Journal of Quantum Electronics, 2015, 32(1): 123-128.

[9] Blanchard P, Zongo P H, Facq P. Accurate reflectance and optical fibre backscatter parameter measurements using an OTDR[J]. Electronics Letters, 1990, 26(25): 2060-2062.

[10] 孔衡. 光时域反射的事件分析算法研究[D]. 上海: 上海交通大学, 2015.

    Kong Heng. Research on events analysis algorithms in optical time domain reflectometry[D]. Shanghai: Shanghai Jiaotong University, 2015.

[11] 孙毅, 赵泰, 侯思祖. 基于OTDR的光纤在线监测系统实验研究[J]. 华北电力大学学报, 2004, 31(5): 78-81.

    Sun Yi, Zhao Tai, Hou Sizu. Experiment of optical fiber monitoring system based on OTDR[J]. Journal of North China Electric Power University, 2004, 31(5): 78-81.

[12] 强冰. 高速光时域反射仪的研制[D]. 南京: 南京理工大学, 2010.

[13] Jones M D. Using simplex codes to improve OTDR sensitivity[J]. IEEE Photonics Technology Letters, 1993, 5(7): 822-824.

[14] Friedlander B, Porat B. Detection of transient signals by the Gabor representation[J]. IEEE Transactions on Acoustics Speech & Signal Processing, 1989, 37(2): 169-180.

[15] 裴益轩, 郭民. 滑动平均法的基本原理及应用[J]. 火炮发射与控制学报, 2001(1): 21-23.

    Pei Yixuan, Guo Min. The fundamental principle and application of sliding average method[J]. Journal of Gun Launch & Control, 2001(1): 21-23.

[16] 范城城, 王密, 杨博, 等. 一种星敏感器/陀螺地面高精度组合定姿与精度验证方法[J]. 光学学报, 2016, 36(11): 1128002.

    Fan Chengcheng, Wang Mi, Yang Bo, et al. A method of high-precision ground processing for star sensor and gyro combination and accuracy verification[J]. Acta Optica Sinica, 2016, 36(11): 1128002.

[17] O′Haver T C. Apragmatic introduction to signal processing[J]. Compcon, 2014: 65-88.

[18] 刘让, 王德江, 贾平, 等. 红外图像弱小目标探测技术综述[J]. 激光与光电子学进展, 2016, 53(5): 050004.

    Liu Rang, Wang Dejiang, Jia Ping, et al. Overview on small target detection technology in infrared image[J]. Laser & Optoelectronics Progress, 2016, 53(5): 050004.

王娟, 倪屹, 郭瑜, 朱星盈. 基于LabVIEW的光时域反射仪及反射事件检测分析[J]. 激光与光电子学进展, 2017, 54(12): 121205. Wang Juan, Ni Yi, Guo Yu, Zhu Xingying. Optical Time Domain Reflectometry Based on LabVIEW and Detection Analysis of Reflection Events[J]. Laser & Optoelectronics Progress, 2017, 54(12): 121205.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!