光学学报, 2008, 28 (9): 1788, 网络出版: 2008-09-09   

基于一维金属-介质周期结构的偏振分束

Polarization Beam Splitters Based on One-Dimensional Metal-Dielectric Structure
作者单位
浙江大学现代光学仪器国家重点实验室, 浙江 杭州 310027
摘要
分析了一维金属-介质周期结构的能带特性,根据一定频率范围内TM波(磁场方向与界面平行)在结构中的负折射以及TE波的正常折射,提出了一种偏振分束器件。利用传输矩阵法(TMM)模拟了该结构对入射高斯光束的偏振分束作用,讨论了不同入射角度下的偏振分束能力,并结合实际金属参量,分析了金属层吸收对结构特性的影响。结果表明该结构在55°附近入射时有最好的性能;在吸收作用下结构偏振分束能力有一定的减小,TM波透射比发生了较大变化,TE波效果较好;随着周期数增加,结构透射比下降,但分光能力显著提高;在工作波段上随着波长增大,金属层吸收对器件的影响减弱。该结构能实现宽波段、宽角度、较高透射比的偏振分束。
Abstract
A one-dimensional metal-dielectric structure was designed for the application of polarized beam splitter (PBS). The band structure of the one-dimensional metal-dielectric structure is calculated, and the PBS is based on the negative refraction for TM polarization and positive refraction for TE polarization in a given frequency range. The transfer matrix method is used to simulate the polarized beam splitting effect as the Gaussian beam enters the finite one-dimensional metal-dielectric structure for both polarizations. The influences of different incident angles and the dissipation of the metal layer absorption on beam splitting are discussed. The simulation shows that this structure possesses the best performance with an incident angle around 55°. For the reason of absorption, the beam splitting ability is limited, the transmittance of TM component changes substantially, but that of TE component is favorable. The transmittance will dicrease and the beam splitting ability will rise when the period of the structure increases. As the operation wavelength increases, the influence of the dissipation of the metal layer will be smaller. This structure can achieve polarized beam splitting in a wide range of wavelength and incident angle with a high transmittance.
参考文献

[1] . Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities[J]. Sov. Phys. Usp., 1968, 10(4): 509-517.

[2] . Negative refraction makes a perfect lens[J]. Phys. Rev. Lett., 2000, 85(18): 3966-3969.

[3] . Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap[J]. Phys. Rev. B, 2000, 62(16): 10696-10699.

[4] . Anomalous refractive properties of photonic crystals[J]. J. Opt. Soc. Am. A, 2000, 17(6): 1012-1020.

[5] 厉以宇,顾培夫,李明宇 等. 波状结构二维光子晶体近场亚波长成像的研究[J]. 光学学报, 2006, 26(9): 1409~1413

    Li Yiyu, Gu Peifu, Li Mingyu et al.. Near field subwavelength imaging in wave like two dimensional photonic crystal[J]. Acta Optica Sinica, 2006, 26(9): 1409~1413

[6] Yuntuan Fang, Yuzhen Liu, Tinggen Shen. Negative refraction and reflection of Gaussian beam on two-dimensional photonic crystal slab[J]. Chin. Opt. Lett., 2006, 4(4): 230~233

[7] . Photonic crystal based polarization control devices[J]. J. Phys. D, 2004, 37: R263-R268.

[8] . . Design of polarization beam splitter in two-dimensional triangular photonic crystals[J]. Chin. Phys. Lett., 2004, 21(7): 1285-1288.

[9] . . Planar photonic crystal polarization splitter[J]. Opt. Lett., 2004, 29(14): 141620-141623.

[10] 李剑峰,罗海陆,郭永康 等. 各向异性超常材料的偏振分离特性[J]. 光学学报, 2007, 27(11): 2027~2033

    Li Jianfeng, Luo Hailu, Guo Yongkang et al.. Splitting effect in anisotropic metamaterial[J]. Acta Optica Sinica, 2007, 27(11): 2027~2033

[11] . Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction[J]. Opt. Lett., 2005, 30(16): 162152-162155.

[12] . All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals[J]. Appl. Phys. Lett., 2006, 89(15): 151102-1.

[13] . . Towards -1 effective index with one-dimensional metal-dielectric metamaterial: a quantitative analysis of the role of absorption losses[J]. Opt. Exp., 2007, 15(12): 7720-7725.

[14] . A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability[J]. Microwave Opt. Technol. Lett., 2002, 33(2): 136-139.

[15] . 一维金属-介质周期结构的自准直特性和亚波长成像[J]. 物理学报, 2007, 56(10): 6075-6079.

    . . Analysis for the self-collimation and subwavelength imaging in one-dimensional metal-dielectric structure[J]. Acta Physica Sinica, 2007, 56(10): 6075-6079.

[16] . Optical constants of noble metals[J]. Phys. Rev. B, 1972, 6(12): 4370-4379.

[17] . Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation[J]. Phys. Rev. B, 1996, 55(12): 7427-7444.

[18] . Removal of absorption and increase in resolution in a near-field lens via optical gain[J]. Phys. Rev. B, 2003, 67: 201101-1.

张锦龙, 刘旭, 厉以宇, 顾培夫. 基于一维金属-介质周期结构的偏振分束[J]. 光学学报, 2008, 28(9): 1788. Zhang Jinlong, Liu Xu, Li Yiyu, Gu Peifu. Polarization Beam Splitters Based on One-Dimensional Metal-Dielectric Structure[J]. Acta Optica Sinica, 2008, 28(9): 1788.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!