Photonic Sensors, 2017, 7 (4): 372, Published Online: Jan. 9, 2018   

Micro S-Shaped Optical Fiber Temperature Sensor Based on Dislocation Fiber Splice

Author Affiliations
1 College of Physics Engineering, Henan University of Science & Technology, Luoyang, 471003, China
2 The Puyang Photoelectric Industry Technology Institute, Pu Yang, 457100, China
Abstract
We fabricated a simple, compact, and stable temperature sensor based on an S-shaped dislocated optical fiber. The dislocation optical fiber has two splice points, and we obtained the optimal parameters based on the theory and our experiment, such as the dislocation amount and length of the dislocation optical fiber. According to the relationship between the temperature and the peak wavelength shift, the temperature of the environment can be obtained. Then, we made this fiber a micro bending as S-shape between the two dislocation points, and the S-shaped micro bending part could release stress with the change in temperature and reduce the effect of stress on the temperature measurement. This structure could solve the problem of sensor distortion caused by the cross response of temperature and stress. We measured the S-shaped dislocation fiber sensor and the dislocation fiber without S-shape under the same environment and conditions, and the S-shaped dislocation fiber had the advantages of the stable reliability and good linearity.
References

[1] I. W. Jung, B. Park, J. Provine, R. T. Howe, and O. Solgaard, “Highly sensitive monolithic silicon photonic crystal fiber tip sensor for simultaneous measurement of refractive index and temperature,” Journal of Lightwave Technology, 2011, 29(9): 1367–1374.

[2] D. X. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar with Mie-scattering correction by Fabry-Perot etalons for temperature profiling of the troposphere,” Applied Optics, 2005, 44(7): 1305–1314.

[3] H. Y. Sun, S. C. Lien, Z. R. Qiu, H. C. Wang, T. Mei, C. W. Liu, et al., “Temperature dependence of Raman scattering in bulk 4H-SiC with different carrier concentration,” Optics Express, 2013, 21(22): 26475–26482.

[4] M. Kezmah and D. Donlagic, “All-fiber low-cost single-point and quasi-distributed evanescent field temperature sensors with extended temperature measurement range, based on standard telecommunication graded index fibers,” Applied Optics, 2008, 47(23): 4212–4220.

[5] J. Roths, G. Andrejevic, R. Kuttler, and M. Sü er, “Calibration of fiber bragg cryogenic temperature sensors,” Optical Fiber Sensors, 2006, 8383(3): 538–555.

[6] D. Donlagic and M. Lesic, “All-fiber quasi-distributed polarimetric temperature sensor,” Optics Express, 2006, 14(22): 10245–10254.

[7] J. He, C. R. Liao, K. M. Yang, S. Liu, G. L. Yin, B. sun, et al., “High-sensitivity temperature sensor based on a coated single-mode fiber loop,” Journal of Lightwave Technology, 2015, 33(19): 4019–4026.

[8] A. Wang, G. Z. Wang, K. A. Murphy, and R. O. Claus, “Fiber-optic temperature sensors based on differential spectral transmittance/reflectivity and multiplexed sensing systems,” Applied Optics, 1995, 34(13): 2295–2300.

[9] H. Zhang, Y. S. Qiu, Z. T. Huang, J. Z. Jiang, G. M. Li, H. X. Chen, et al., “Temperature and vibration robustness of reflecting all-fiber current sensor using common single-mode fiber,” Journal of Lightwave Technology, 2014, 32(22): 3709–3715.

[10] T. Stańczyk, K. Wysokiński, M. Filipowicz, T. Tenderenda, K. Giba a, H. Krisch, et al., “Electrolytic joints between metal surfaces and metal-coated fibers for application in high temperature optical fiber sensors,” Journal of Lightwave Technology, 2015, 33(12): 2480–2485.

[11] S. Rizzolo, E. Marin, A. Morana, A. Boukenter, Y. Ouerdane, M. Cannas, et al., “Investigation of coating impact on OFDR optical remote fiber-based sensors performances for their integration in high temperature and radiation environments,” Journal of Lightwave Technology, 2016, 34(19): 4460–4465.

[12] E. R. Vera, C. M. B. Cordeiro, and P. Torres, “Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal,” Applied Optics, 2017, 56(2): 156–162.

[13] G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Optics Express, 2015, 23(6): 7237–7247.

[14] S. J. Weng, L. Pei, J. S. Wang, T. G. Ning, and J. Li, “High sensitivity d-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photonics Research, 2017, 5(2): 103–107.

[15] W. J. Yoo, K. W. Jang, J. K. Seo, J. Y. Heo, J. S. Moon, J. Y. Park, et al., “Development of respiration sensors using plastic optical fiber for respiratory monitoring inside MRI system,” Journal of the Optical Society of Korea, 2010, 14(3): 235–239.

[16] B. Dong, D. P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarizationmaintaining photonic crystal fiber interferometer and its applications in fiber sensors,” Journal of Lightwave Technology, 2101, 28(7): 1011–1015.

Haitao YAN, Pengfei LI, Haojie ZHANG, Xiaoyue SHEN, Yongzhen WANG. Micro S-Shaped Optical Fiber Temperature Sensor Based on Dislocation Fiber Splice[J]. Photonic Sensors, 2017, 7(4): 372.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!