光学学报, 2020, 40 (6): 0623001, 网络出版: 2020-03-06   

利用B3PyPPM∶Cs改善磷光有机电致发光器件性能 下载: 878次

Performance Improvement of Phosphorescent Organic Light-Emitting Devices Using B3PyPPM∶Cs
作者单位
华侨大学信息科学与工程学院, 福建 厦门 361021
引用该论文

林雯嫣, 陈宁, 林宝卿, 吴志军, 凌朝东. 利用B3PyPPM∶Cs改善磷光有机电致发光器件性能[J]. 光学学报, 2020, 40(6): 0623001.

Wenyan Lin, Ning Chen, Baoqing Lin, Zhijun Wu, Chaodong Ling. Performance Improvement of Phosphorescent Organic Light-Emitting Devices Using B3PyPPM∶Cs[J]. Acta Optica Sinica, 2020, 40(6): 0623001.

参考文献

[1] 杨惠山. 荧光亚单层结合磷光掺杂层制备白色有机发光器件[J]. 光学学报, 2013, 33(3): 0323005.

    Yang H S. Fabrications of white organic light-emitting device based on fluorescent sub-monolayer combine with phosphorescent doping layer[J]. Acta Optica Sinica, 2013, 33(3): 0323005.

[2] Song D D, Zhao S L, Aziz H. Modification of exciton lifetime by the metal cathode in phosphorescent OLEDs, and implications on device efficiency and efficiency roll-off behavior[J]. Advanced Functional Materials, 2011, 21(12): 2311-2317.

[3] Wu Z G, Zheng Y X, Zhou L, et al. Suppression of efficiency roll-off in highly efficient blue phosphorescent organic light-emitting devices using novel iridium phosphors with good electron mobility[J]. Organic Electronics, 2017, 42: 141-145.

[4] Chiu T L, Chen H J, Hung Y H, et al. Structural optimizing carrier recombination for efficient blue phosphorescence organic light-emitting diode with ambipolar host[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22(1): 54-59.

[5] Lee W H, Kim D H, Justin Jesuraj P, et al. Improvement of charge balance, recombination zone confinement, and low efficiency roll-off in green phosphorescent OLEDs by altering electron transport layer thickness[J]. Materials Research Express, 2018, 5(7): 076201.

[6] Chen D C, Su S J, Cao Y. Nitrogen heterocycle-containing materials for highly efficient phosphorescent OLEDs with low operating voltage[J]. Journal of Materials Chemistry C, 2014, 2(45): 9565-9578.

[7] Yang X L, Zhou G J, Wong W Y. Functionalization of phosphorescent emitters and their host materials by main-group elements for phosphorescent organic light-emitting devices[J]. Chemical Society Reviews, 2015, 44(23): 8484-8575.

[8] Yasuda T, Yamaguchi Y, Zou D C, et al. Carrier mobilities in organic electron transport materials determined from space charge limited current[J]. Japanese Journal of Applied Physics, 2002, 41(Part 1, No. 9): 5626-5629.

[9] Baldo M A, Adachi C, Forrest S R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation[J]. Physical Review B, 2000, 62(16): 10967-10977.

[10] Reineke S, Walzer K, Leo K. Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters[J]. Physical Review B, 2007, 75(12): 125328.

[11] Yin X J, Zhang T K, Peng Q M, et al. Benzobisoxazole-based electron transporting materials with high Tg and ambipolar property: high efficiency deep-red phosphorescent OLEDs[J]. Journal of Materials Chemistry C, 2015, 3(29): 7589-7596.

[12] 林雯嫣, 喻叶, 彭雪康, 等. N掺杂改善黄色磷光有机电致发光器件的效率滚降[J]. 光学学报, 2019, 39(3): 0323001.

    Lin W Y, Yu Y, Peng X K, et al. Improvement of efficiency roll-off of yellow phosphorescent organic light-emitting devices by N-doping[J]. Acta Optica Sinica, 2019, 39(3): 0323001.

[13] Wang J X, Chen J S, Qiao X F, et al. Simple-structured phosphorescent warm white organic light-emitting diodes with high power efficiency and low efficiency roll-off[J]. ACS Applied Materials & Interfaces, 2016, 8(16): 10093-10097.

[14] Poitras D, Kuo C C, Py C. Design of high-contrast OLEDs with microcavity effect[J]. Optics Express, 2008, 16(11): 8003-8015.

[15] Cao Y, Yu G, Heeger A J. Efficient, low operating voltage polymer light-emitting diodes with aluminum as the cathode material[J]. Advanced Materials, 1998, 10(12): 917-920.

[16] Chen J S, Shi C S, Fu Q, et al. Solution-processable small molecules as efficient universal bipolar host for blue, green and red phosphorescent inverted OLEDs[J]. Journal of Materials Chemistry, 2012, 22(11): 5164-5170.

[17] Malliaras G G, Salem J R, Brock P J, et al. Photovoltaic measurement of the built-in potential in organic light emitting diodes and photodiodes[J]. Journal of Applied Physics, 1998, 84(3): 1583-1587.

[18] SasabeH, ChibaT, Su SJ, et al. 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices[J]. Chemical Communications, 2008( 44): 5821- 5823.

[19] Kido J, Sasabe H, Yokoyama D, et al. White OLEDs for general lighting[Invited Paper][J]. SID Symposium Digest of Technical Papers, 2012, 43(1): 776-777.

林雯嫣, 陈宁, 林宝卿, 吴志军, 凌朝东. 利用B3PyPPM∶Cs改善磷光有机电致发光器件性能[J]. 光学学报, 2020, 40(6): 0623001. Wenyan Lin, Ning Chen, Baoqing Lin, Zhijun Wu, Chaodong Ling. Performance Improvement of Phosphorescent Organic Light-Emitting Devices Using B3PyPPM∶Cs[J]. Acta Optica Sinica, 2020, 40(6): 0623001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!