强激光与粒子束, 2015, 27 (11): 119001, 网络出版: 2015-11-30  

Si,Al对激光熔覆 MoFeCrTiW 高熵合金涂层组织性能的影响

Effect of silicon and aluminum on microstructure and properties of laser cladding MoFeCrTiW high-entropy alloy coating
周芳 1,2,*刘其斌 1,2郑波 1
作者单位
1 贵州大学 材料与冶金学院, 贵阳 550025
2 贵州省材料结构与强度重点实验室, 贵阳 550025
摘要
为了提高材料表面的耐磨性和高温抗氧化性,利用激光熔覆技术在Q235钢表面制备了MoFeCrTiW高熵合金涂层,并采用X射线衍射仪(XRD)、扫描电镜(SEM)和磨损试验机等研究了Si,Al添加对高熵合金涂层组织、相结构、耐磨性和高温抗氧化性能的影响。结果表明:激光熔覆MoFeCrTiW高熵合金涂层组织为等轴晶,单独添加等物质的量的Si或Al时,涂层分别为共晶组织或树枝晶,同时添加等物质的量的Si和Al时,涂层组织为细小的等轴晶。各高熵合金涂层的主体相均为BCC相,随着Si,Al的添加,BCC相的晶格常数减小。添加等物质的量的Al有助于抑制涂层中金属间化合物的形成,使涂层耐磨性降低;添加等物质的量的Si则会形成含Si的金属间化合物和一些未知相,提高涂层耐磨性。激光熔覆MoFeCrTiW高熵合金涂层在800 ℃的抗氧化性较高,Si、Al的添加可使涂层的高温抗氧化性进一步提高。
Abstract
In order to improve the wear resistance and high-temperature oxidation resistance of materials surface, MoFeCrTiW high-entropy alloy coating, named MoFeCrTiW HEA coating, was fabricated on Q235 steel by laser cladding. The effect of silicon and aluminum on the microstructure, phase, wear resistance and high-temperature oxidation resistance were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and wear tester. The results show that the microstructure of MoFeCrTiW HEA cladding coating is composed of equiaxed grains. After adding equimolar silicon or aluminum respectively, the microstructure of coating is eutectic or dendrites.The microstructure consists of fine equiaxed grains when adding equimolar silicon and aluminum simultaneously. The main phase of HEA coatings is BCC structure. With the addition of silicon and aluminum, the lattice constants of BCC are reduced. Adding equimolar aluminum can contribute to restrain the formation of intermetallic compound and decrease the wear resistance of coatings, whereas adding equimolar silicon can promote the formation of intermetallic compound and some unknown phases, then the wear resistance of coatings can be increased. MoFeCrTiW HEA cladding coating exhibits high oxidation resistance at 800 ℃, the high temperature oxidation of coatings can be further increased after adding silicon and aluminum.
参考文献

[1] 张辉, 邹勇, 邹增大, 等. Cr对TiC-VC增强铁基熔覆层耐蚀性及耐磨性的影响[J]. 强激光与粒子束, 2014, 26: 031015.

    Zhang Hui, Zou Yong, Zou Zengda, et al. Effect of Cr on corrosion and wear resistances of TiC-VC reinforced ferrite-based laser cladding coatings. High Power Laser and Particle Beams, 2014, 26: 031015

[2] 郑毕举, 胡文. 激光熔覆Al+SiC涂层对镁合金表面耐磨性能的改性[J]. 强激光与粒子束, 2014, 26: 059003.

    Zheng Biju, Hu Wen. Enhanced wear property of magnesium alloy with Al+SiC coating by laser cladding. High Power Laser and Particle Beams, 2014, 26: 059003

[3] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303.

[4] Xu X D, Liu P, Guo S, et al. Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy[J]. Acta Materialia, 2015, 84: 145-152.

[5] Liu W H, He J Y, Huang H L, et al. Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys[J]. Intermetallics, 2015, 60: 1-8.

[6] Wang L M, Chen C C, Yeh J W, et al. The microstructure and strengthening mechanism of thermal spray coating NixCo0.6Fe0.2CrySi2AlTi0.2 high-entropy alloys[J].Materials Chemistry and Physics, 2011, 126 (3): 880-885.

[7] Yao C Z,Zhang P, Liu M, et al. Electro-chemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy[J]. Electrochimica Acta, 2008, 53: 8359-8365.

[8] Braeckman B R, Boydens F, Hidalgo H, et al. High entropy alloy thin films deposited by magnetron sputtering of powder targets[J]. Thin Solid Films, 2015, 580(1): 71-76.

[9] 张晖, 潘冶, 何宜柱. 激光熔覆FeCoNiCrAl2Si高熵合金涂层[J]. 金属学报, 2011, 47(8): 1075-1079.

    Zhang Hui, Pan Ye, He Yizhu. Laser cladding FeCoNiCrAl2Si high-entropy alloy coating. Acta Metallurgica Sinica, 2011, 47(8): 1075-1079

[10] Zhang H, Pan Y, He Y Z, et al. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding[J]. Applied Surface Science, 2011, 257: 2259-2263.

[11] Zhang H, Pan Y, He Y Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding[J]. Materials and Design, 2011, 32:1910-1915.

[12] Zhang H, He Y Z, Pan Y. Enhanced hardness and fracture toughness of the laser-solidified FeCoNiCrCuTiMoAlSiB0.5 high-entropy alloy by martensite strengthening[J]. Scripta Materialia, 2013, 69: 342-345.

[13] 邱星武, 张云鹏, 刘春阁. 激光熔覆法制备Al2CrFeCoxCuNiTi高熵合金涂层的组织与性能[J]. 粉末冶金材料科学与工程, 2013, 18(5): 735-740.

    Qiu Xingwu, Zhang Yunpeng, Liu Chunge. Microstructure and properties of Al2CrFeCoxCuNiTi high-entropy alloy coating prepared by laser cladding. Materials Science and Engineering of Powder Metallurgy, 2013, 18(5): 735-740

[14] 翁子清, 董刚, 张群莉, 等. 退火对激光熔覆FeCrNiCoMn高熵合金涂层组织与性能的影响[J]. 中国激光, 2014, 41: 0303002.

    Weng Ziqing, Dong Gang, Zhang Qunli, et al. Effects of annealing on microstructure and properties of FeCrNiCoMn high-entropy alloy coating prepared by laser cladding. Chinese Journal of Lasers, 2014, 41: 0303002

[15] Huang C, Zhang Y Z, Vilar R, et al. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials and Design, 2012, 41: 338-343.

[16] 安旭龙, 刘其斌, 郑波. 碳化钨对激光熔覆高熵合金的影响[J].强激光与粒子束, 2014, 26: 129001.

    An Xulong, Liu Qibin, Zheng Bo. Effect of wolfram carbide particles on high entropy alloy coating prepared by laser cladding. High Power Laser and Particle Beams, 2014, 26: 129001

[17] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions, 2005, 46(12): 2817-2829.

[18] Zhu J M, Fu H M, Zhang H F, et a1. Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys[J]. Materials Science and Engineering, 2010, A527 (27/28): 7210-7214.

[19] Wang F J, Zhang Y, Chen G L. Atomic packing efficiency and phase transition in a high entropy alloy[J]. Journal of Alloys and Compounds, 2009, 478: 321-324.

[20] 安旭龙, 刘其斌, 郑波. 激光熔覆制备高熵合金MoFeCrTiWAlxSiy涂层的组织与性能[J]. 红外与激光工程, 2014, 43(4): 1140-1144.

    An Xulong, Liu Qibin, Zheng bo. Microstructure and properties of laser cladding high entropy alloy MoFeCrTiWAlxSiy coating. Infrared and Laser Engineering, 2014, 43(4): 1140-1144

[21] Pilling N B, Bedworth R E. The oxidation of metals in high temperature[J]. Journal of Institute of Metals, 1923, 29: 529-591.

[22] 李铁藩. 金属高温氧化和热腐蚀[M]. 北京: 化学工业出版社, 2003.

    Li Tiefan. High-temperature oxidation and hot corrosion of metals.Beijing:Chemical Industry Press, 2003

周芳, 刘其斌, 郑波. Si,Al对激光熔覆 MoFeCrTiW 高熵合金涂层组织性能的影响[J]. 强激光与粒子束, 2015, 27(11): 119001. Zhou Fang, Liu Qibin, Zheng Bo. Effect of silicon and aluminum on microstructure and properties of laser cladding MoFeCrTiW high-entropy alloy coating[J]. High Power Laser and Particle Beams, 2015, 27(11): 119001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!