光学 精密工程, 2019, 27 (7): 1544, 网络出版: 2019-09-02  

星载激光通信端机可重复锁紧/解锁机构设计

Design of repeatable locking/unlocking mechanism for spaceborne laser communication terminal
孟立新 1,2,3,*孟令臣 1,3李小明 1,2,3张家齐 1,2,3迟铁 1,3张立中 1,2,3
作者单位
1 长春理工大学 空间光电技术国家地方联合工程研究中心, 吉林 长春 130022
2 长春理工大学 空地激光通信技术国防重点学科实验室, 吉林 长春 130022
3 长春理工大学 机电工程学院, 吉林 长春 130022
摘要
针对星载激光通信端机伺服转动系统在轨期间多次锁紧/解锁需求, 提出了一种基于形状记忆合金(SMA)丝的可重复锁紧/解锁机构。首先, 分析了重复锁紧/解锁机构利用弹簧分力实现锁紧和SMA丝输出回复应力实现解锁的工作原理, 利用杠杆原理优化了锁紧力与锁紧位移; 其次, 仿真分析了锁紧力与解锁力之间的平衡关系, 以及锁紧力对整机模态的影响; 最后, 研制了原理样机, 实验验证了解锁力、解锁时间与供电电流的关系、重复锁紧/解锁功能, 以及高温、振动等航天环境对锁紧机构可靠性影响等问题。实验结果显示, 该机构可提供1 000 N锁紧力, 在输入12 V/3 A电源时, 最大解锁时间不超过2 s, 在环境温度90 ℃以下可保证稳定可靠锁紧, 并可实现多次重复锁紧/解锁。该机构具有轻小型、低冲击、可重复、低功耗优点, 满足星载激光通信端机多次锁紧/解锁需求, 应用潜力巨大。
Abstract
A repetitive locking/unlocking mechanism based on a Shape Memory Alloy (SMA) wire was proposed to meet the multiple locking/unlocking requirements of the servo system of an onboard laser communication terminal during orbit. First, the working principle of a repeated locking/unlocking mechanism that used a spring component to realize locking and that of an SMA wire output return stress to unlock were analyzed. The locking principle was applied to optimize the locking force and displacement. Second, the locking force was simulated and analyzed. The balance between the unlocking force and the influence of the locking force on the modal of the whole machine was also considered. Finally, a prototype was developed, and the repeated locking/unlocking function as well as the relationships among the unlocking force, unlocking time, and supply current were verified experimentally. Problems such as high temperature, vibration, and different aerospace environments that affect the reliability of the locking mechanism were investigated. Experimental results show that the mechanism can provide a 1 000-N locking force. When a 12 V/3 A power supply is input, the maximum unlocking time does not exceed 2 s. Under an ambient temperature of 90 °C, stable and reliable locking can be ensured, and multiple repetitions of locking/unlocking can be realized. The mechanism has the advantages of being light, small, and repeatable and of having low impact and low power consumption, thus meeting the requirements of multiple locking/unlocking of an onboard laser communication terminal. The mechanism thus demonstrates great application potential.
参考文献

[1] 刘志全.航天器机构及其可靠性[M].北京: 中国宇航出版社,2012.

    LIU ZH Q. Spacecraft Institutions and Their Reliability [M]. Beijing: China Aerospace Press, 2012. (in Chinese)

[2] 姜会林, 安岩, 张雅琳, 等. 空间激光通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报, 2015, 34(3): 207-217.

    JIANG H L, AN Y, ZHANG Y L, et al.. Analysis of the status quo, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT&C Technology, 2015, 34(3): 207-217. (in Chinese)

[3] 王忠素, 吴清文, 郭权峰, 等. 空间光学载荷探测器组件抗冲击隔振设计[J]. 光学 精密工程, 2017, 25(8): 2098-2105.

    WANG Z S, WU Q W, GUO Q F, et al.. Design of anti-shock vibration isolation for detector module of space optics load[J]. Opt. Precision Eng., 2017, 25(8): 2098-2105. (in Chinese)

[4] 王书新, 李景林, 齐光, 等. 空间相机用爆炸螺栓防护装置[J]. 光学 精密工程, 2014, 22(12): 3318-3323.

    WANG SH X,LI J L, QI G, et al.. Protecting device for explosive bolt in space camera[J]. Opt. Precision Eng.,2014, 22(12): 3318-3323. (in Chinese)

[5] 宣明, 张道威, 谷松, 等. 微小卫星太阳帆板压紧释放机构的设计[J]. 光学 精密工程, 2017, 25(4): 447-454.

    XUAN M, ZHANG D W, GU S, et al.. Design of hold-down and release mechanism for solar panel of micro-satellite[J]. Opt. Precision Eng., 2017, 25(4): 447-454. (in Chinese)

[6] 张佼龙, 周军. 立方星星箭分离机构运动系统的设计与验证[J]. 光学 精密工程, 2017, 25(4): 387-395.

    ZHANG J L, ZHOU J. Design and verification of kinematic system in deploying mechanism for CubeSats[J]. Opt. Precision Eng., 2017, 25(4): 387-395. (in Chinese)

[7] 王玉鹏, 王凯, 贾瑞栋, 等. 精指向自解锁星载太阳指向器设计与应用[J]. 光学 精密工程, 2016, 24(1): 0065.

    WANG Y P, WANG K, JIA R D, et al.. Design and application of accurate pointing and auto-unlocking sun tracker on satellite[J]. Opt. Precision Eng., 2016, 24(1): 65-72. (in Chinese)

[8] ERIC D MILLERA, MICHAEL DESPENZAB, ILYA GAVRILYUKB, et al.. A prototype coarse pointing mechanism for laser communication[C]. Free-Space Laser Communication and Atmospheric Propagation XXIX. 2017

[9] 贺志荣, 周超, 刘琳, 等. 形状记忆合金及其应用研究进展[J]. 铸造技术, 2017, 38(2): 257-261.

    HE Z R, ZHOU C, LIU L, et al.. Research progress of shape memory alloys and their applications[J]. Foundry Technology, 2017, 38(2): 257-261. (in Chinese)

[10] 张明德, 李雅格, 吴艳斌, 等. 形状记忆合金驱动器动态驱动性能研究[J]. 航空制造技术, 2017(17): 49-54.

    ZHANG M D, LI Y G, WU Y B, et al.. Research on dynamic driving characteristic of shape memory alloy actuator[J]. Aeronautical Manufacturing Technology, 2017(17): 49-54. (in Chinese)

[11] 秦晓宇, 张小勇, 闫晓军, 等. 自锁式形状记忆合金馈源锁紧机构[J]. 宇航学报, 2016, 37(3): 357-363.

    QIN X Y, ZHANG X Y, YAN X J, et al.. An SMA-actuated locking device for feed source structure based on self-locking principle[J]. Journal of Astronautics, 2016, 37(3): 357-363. (in Chinese)

[12] BUCKLEY S, FOSNESS E, GAMMILL W. Deployment and release devices efforts at the air force research laboratory space vehicles directorate[C]//AIAA Space 2001 Conference and Exposition, Albuquerque, NM, USA. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2001.

[13] NAVA N, COLLADO M, CAB S R. REACT: resettable hold down and release actuator for space applications[J]. Journal of Materials Engineering and Performance, 2014, 23(7): 2704-2711.

[14] 王轩. 飞行环境下航天器结构的模态分析技术[D]. 上海: 复旦大学, 2008.

    WANG X. Operational modal identification of spacecraft structures[D]. Shanghai: Fudan University, 2008. (in Chinese)

[15] 刘晨, 朱剑涛, 刘丽红, 等. 某平台卫星发射及在轨力学环境测量与分析[J]. 航天器环境工程, 2017, 34(3): 270-276.

    LIU CH, ZHU J T, LIU L H, et al.. Dynamics parameter measurement and analysis of certain satellite platform during the launch and in orbit[J]. Spacecraft Environment Engineering, 2017, 34(3): 270-276. (in Chinese)

孟立新, 孟令臣, 李小明, 张家齐, 迟铁, 张立中. 星载激光通信端机可重复锁紧/解锁机构设计[J]. 光学 精密工程, 2019, 27(7): 1544. MENG Li-xin, MENG Ling-chen, LI Xiao-ming, ZHANG Jia-qi, CHI Tie, ZHANG Li-zhong. Design of repeatable locking/unlocking mechanism for spaceborne laser communication terminal[J]. Optics and Precision Engineering, 2019, 27(7): 1544.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!