光学 精密工程, 2015, 23 (2): 387, 网络出版: 2015-03-23   

航空多角度偏振辐射计信噪比估算与测量

Estimation and measurement of signal-to-noise ratio for aviation multi-angular polarimetric radiometer
作者单位
1 中国科学院 安徽光学精密机械研究所 光学遥感中心, 安徽 合肥 230031
2 安徽建筑大学 机械与电气工程学院, 安徽 合肥 230601
摘要
为精确评估航空多角度偏振辐射计的性能, 分析了航空多角度偏振辐射计的信号与噪声, 给出了估算其探测器信噪比的过程。介绍了航空多角度偏振辐射计的工作原理, 推导了探测器信噪比与系统信噪比的估算表达式。结果显示: 系统信噪比与强度信噪比成正比, 探测器信噪比需求与偏振探测精度成反比, 航空多角度偏振辐射计的探测器信噪比应不小于245, 得到的结果弥补了一直以来偏振遥感仪器只计算探测器信噪比的不足。最后, 根据推导的表达式, 通过矢量传输模拟估算了用航空多角度偏振辐射计探测典型场景时的探测器信噪比与系统信噪比, 并在暗室中利用积分球与偏振盒进行了测量。结果表明, 航空多角度偏振辐射计各个探测器的信噪比均满足偏振探测的需求。
Abstract
To estimate the performance of an Aviation Multi-angular Polarimetric Radiometer (AMPR) precisely, its signals and noise were analyzed and the estimation processing for signal-to-noise ratios (SNRs) were investigated. The working principle of the AMPR was introduced and the formulas to calculate the detector SNRs and system SNRs were inferred. It indicates that the system SNR is proportional to intensity SNR while the requirement of detector SNR is inverse proportional to the polarimetric accuracy. However, the detector SNRs of AMPR should not be less than 245. The results make up the shortcoming from the traditional method that the precision of the polarization remote sensing instruments depends only on the detector SNRs. Finally, the system SNRs and the detector SNRs in a typical scene simulated by vector radiative transfer were estimated with the inferred formula and tested by a Spherical Integrating Source (SIS) and a polarization box in a dark laboratory. The results show that the SNRs of the AMPR detector meet the requirements of polarimetric detection.
参考文献

[1] 张朝阳, 程海峰, 陈朝辉, 等.偏振遥感的研究现状及发展趋势[J].激光与红外, 2007, 37(12): 1237-1240.

    ZHANG CH Y, CHENG H F, CHEN ZH H, et al.. The present research and developing trend of polarization remote sensing[J]. Laser and Infrared, 2007, 37(12): 1237-1240. (in Chinese)

[2] 李淑军, 姜会林, 朱京平, 等.偏振成像探测技术发展现状及关键技术[J].中国光学, 2013, 6(6): 803-809.

    LI SH J, JIANG H L, ZHU J P, et al.. Development status and key technologies of polarization imaging detection[J]. Chinese Optics, 2013, 6(6): 803-809. (in Chinese)

[3] HASEKAMP O P, LANDGRAF J. Retrieval of aerosol properties over land surfaces capabilities of multiple-viewing-angle intensity and polarization measurements [J]. Applied Optics, 2007, 46(16): 3332-3344.

[4] WAQUET F, CORNET C, DEUZJ L, et al.. Retrieval of aerosol microphysical and optical properties above liquid clouds from POLDER/PARASOL polarization measurements [J]. Atmos. Meas. Tech., 2012, 6: 991-1016.

[5] LITVINOV P, HASEKAMP O, CAIRNS B. Models for surface reflection of radiance and polarized radiance comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements [J]. Remote Sensing of Environment, 2011, 115(2): 781-792.

[6] 罗睿智, 乔延利, 曹汉军, 等.航空型多波段偏振遥感探测及其光学系统的研究与设计[J]. 量子电子学报, 2002, 19(2): 143-148.

    LUO R ZH, QIAO Y L, CAO H J, et al.. Research and designation on optical system for aviation multi-angular remote sensing detection[J]. Chinese Journal of Quantum Electronics, 2002, 19(2): 143-148. (in Chinese)

[7] 崔文煜, 张运杰, 易维宁, 等.多角度偏振辐射计系统设计与实现[J].光学学报, 2012, 32(8): 1-4.

    CUI W Y, ZHANG Y J, YI W N, et al.. System design and implementation of multi-angle polarimeter[J]. Acta Optica Sinica, 2012, 32(8): 1-4. (in Chinese)

[8] PERALTA R J, NARDELL C, CAIRNS B, et al.. Aerosol polarimetry sensor for the glory mission[J]. SPIE, 2007, 67865L: 1-17.

[9] MIECZNIK G, ILLING R, PETROY S, et al.. Sensitivity metric approach for retrieval of aerosol properties from multiangular and multispectral polarized radiances[J]. Appl. Optics, 2005, 44(20): 4186-4204.

[10] GSFC 421.7-70-0. Aerosol polarimetry sensor algorithm theoretic basis document[Z/OL]. http: //glory.giss.nasa.gov/aps/docs/APS_ATBD_CALIBRATE_CCB.pdf.

[11] PERSH S, SHAHAM Y J, BENAMIA O, et al.. Ground performance measurements of the glory aerosol polarimetry sensor[J]. SPIE, 2010, 7807: 780703.

[12] ANDR Y, LAHERRRE J M, BRET-DIBAT T, et al.. Instrumental concept and performances of the POLDER instrument [J]. SPIE, 1995, 2572: 79-90.

[13] 宋茂新, 孙斌, 孙晓兵, 等. 航空航空多角度偏振辐射计的偏振定标[J]. 光学 精密工程, 2012, 20(6): 1153-1158.

    SONG M X, SUN B, SUN X B, et al.. Polarization calibration of aviation muti-angle polarizing radiometer[J]. Opt. Precision Eng., 2012, 20(6): 1153-1158. (in Chinese)

[14] 孙晓兵, 洪津, 乔延利, 等. 卫星大气多角度偏振遥感系统方案研究[J]. 大气与环境光学学报, 2006, 1(3): 198-201.

    SUN X B, HONG J, QIAO Y L, et al.. Project of multi-angle polarimetric system onboard sarellite for remote sensing of atmosphere [J]. Journal of Atmospheric and Environmental Optics, 2006, 1(3): 198-201. (in Chinese)

[15] MISHCHENKO M I, ROSENBUSH V K, KISELEV N N, et al.. Polarimetric Remote Sensing of Solar System Objects[M]. Kyiv: Akademperiodyka, 2010.

[16] KNOBELSPIESSE K, CAIRNS B, REDEMANN J, et al.. Simultaneous retrieval of aerosol and cloud properties during the MILAGRO field campaign[J]. Atmos. Chem. Phys., 2011, 11: 6245-6263.

[17] ELIAS T, CAIRNS B, CHOWDHARY J. Surface optical properties measured by the airborne research scanning polarimeter during the CLAMS experiment[J]. SPIE, 2004, 5235: 595-606.

[18] 宋宁, 韩心志.光学系统探测器上的辐照度的偏振分析[J]. 光学 精密工程, 1999, 7(3): 47-51.

    SONG N, HAN X ZH. Polarization analysis of irradiance on detector of optical system [J]. Opt. Precision Eng., 1999, 7(3): 47-51. (in Chinese)

[19] Santa Barbara Research Center. Earth observing scanning polarimeter PHASE-B final report[R]. New York: NASS, 1990.

[20] LOMHEIM T S, MILNE E L, KWOK J D, et al.. Performance/sizing relationships for a short-wave/mid-wave infrared scanning pointsource detection space sensor[C]. IEEE Aero-space Conference, 1999, 4: 113-138.

[21] ROZANOV V V, KOKHANOVSKY A A. The solution of the vector radiative transfer equation using the discrete ordinates technique_selected applications[J]. Atmospheric Research, 2006, 79 (3-4): 241-265.

[22] KOKHANOVSKY A A. Aerosol Optics-Light Absorption and Scattering by Particles in the Atmosphere[M]. New York: Springer, 2008.

[23] CHEN Y H, JI Y Q, ZHOU J K, et al.. Computation of signal-to-noise ratio of airborne hyperspectral imaging spectrometer[C]. Systems and Informatics (ICSAI), 2012 International Conference on Systems and Informatics, 2012: 1046-1049.

[24] WAQUET F, LON J F, CAIRNS B, et al.. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land [J]. Applied Optics, 2009, 48(6): 1228-1236.

[25] IGNATOV A, STOWE L. Aerosol retrievals from individual AVHRR channels: Part II. Quality control, probability distribution functions, information content, and consistency checks of retrievals[J]. J. Atmos. Sci., 2002, 59: 335-362.

汪方斌, 洪津, 孙晓兵, 王羿. 航空多角度偏振辐射计信噪比估算与测量[J]. 光学 精密工程, 2015, 23(2): 387. WANG Fang-bin, HONG Jin, SUN Xiao-bing, WANG Yi. Estimation and measurement of signal-to-noise ratio for aviation multi-angular polarimetric radiometer[J]. Optics and Precision Engineering, 2015, 23(2): 387.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!