Matter and Radiation at Extremes, 2016, 1 (1): 59, Published Online: May. 9, 2017  

Recent advances in high-pressure science and technology

Author Affiliations
Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, PR China
Abstract
Recently we are witnessing the boom of high-pressure science and technology from a small niche field to becoming a major dimension in physical sciences. One of the most important technological advances is the integration of synchrotron nanotechnology with the minute samples at ultrahigh pressures. Applications of high pressure have greatly enhanced our understanding of the electronic, phonon, and doping effects on the newly emerged graphene and related 2D layered materials. High pressure has created exotic stoichiometry even in common Group 17, 15, and 14 compounds and drastically altered the basic s and p bonding of organic compounds. Differential pressure measurements enable us to study the rheology and flow of mantle minerals in solid state, thus quantitatively constraining the geodynamics. They also introduce a new approach to understand defect and plastic deformations of nano particles. These examples open new frontiers of high-pressure research.
References

[1] L. Dubrovinsky, N. Dubrovinskaia, E. Bykova, M. Bykov, V. Prakapenka, C. Prescher, K. Glazyrin, H.-P. Liermann, M. Hanfland, M. Ekholm, Q. Feng, L.V. Pourovskii, M.I. Katsnelson, J.M. Wills, I.A. Abrikosov, The most incompressible metal osmium at static pressures above 750 gigapascals, Nature 525 (2015) 226-229.

[2] K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, Sa Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666-669.

[3] L.Wang, Y. Ding,W. Yang,W. Liu, Z. Cai, J. Kung, J. Shu, R.J. Hemley, W.L. Mao, H.K. Mao, Nanoprobe measurements of materials at megabar pressures, Proc. Nat. Acad. Sci. USA 107 (2010) 6140-6145.

[4] Y. Ding, J. Fernandez-Rodriguez, J. Kim, F. Li, D. Casa, M. Upton, T. Gog, H.K. Mao, M. van Veenendaal, Spin-ordering mediated orbital hybridization in CoO at high pressures, Phys. Rev. B 86 (2012) 094107.

[5] D. Haskel, G. Fabbris, M. Zhernenkov, P.P. Kong, C.Q. Jin, G. Cao, M. van Veenendaal, Pressure tuning of the spin-orbit coupled ground state in Sr2IrO4, Phys. Rev. Lett. 109 (2012) 027204.

[6] Y.Q. Cai, D.S. Coburn, A. Cunsolo, J.W. Keister, M.G. Honnicke, X.R. Huang, C.N. Kodituwakku, Y. Stetsko, A. Suvorov, N. Hiraoka, K.D. Tsuei, H.C. Wille, The ultrahigh resolution IXS Beamline of NSLS-II: recent advances and scientific opportunities, J. Phys. Conf. Ser. 425 (2013) 202001.

[7] J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane, Beyond crystallography: diffractive imaging using coherent X-ray light sources, Science 348 (2015) 530-535.

[8] L. Ehm, S.M. Antao, J. Chen, D.R. Locke, F.M. Michel, C.D. Martin, T. Yu, J.B. Parise, P.L. Lee, P.J. Chupas, S.D. Shastri, Q. Guo, Studies of local and intermediate range structure in crystalline and amorphous materials at high pressure using high-energy X-rays, Powder Diffr. 22 (2007) 108-112.

[9] L. Wang, W. Yang, Y. Ding, Y. Ren, S. Xiao, B. Liu, S.V. Sinogeikin, Y. Meng, D.J. Gosztola, G. Shen, R.J. Hemley, W.L. Mao, H.K. Mao, Size-dependent amorphization of nanoscale Y2O3 at high pressure, Phys. Rev. Lett. 105 (2010) 095701.

[10] X. Lu¨, Q. Hu, W. Yang, L. Bai, H. Sheng, L. Wang, F. Huang, J. Wen, D.J. Miller, Y. Zhao, Pressure-induced amorphization in single crystal Ta2O5 nanowires: a kinetic mechanism and improved electrical conductivity, J. Am. Chem. Soc. 135 (2013) 13947-13953.

[11] M.A. Pfeifer, G.J. Williams, I.A. Vartanyants, R. Harder, I.K. Robinson, Three-dimensional mapping of a deformation field inside a nanocrystal, Nature 442 (2006) 63-66.

[12] W. Yang, X. Huang, R. Harder, J.N. Clark, I.K. Robinson, H.K. Mao, Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure, Nat. Commun. 4 (2013) 1680.

[13] X. Huang, W. Yang, R. Harder, Y. Sun, Y. Ming Lu, S. Chu, I.K. Robinson, H.K. Mao, Deformation twinning of a silver nanocrystal under high pressure, Nano Lett. 15 (2015) 7644-7649.

[14] A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, Micrometer-scale ballistic transport in encapsulated graphene at room temperature, Nano Lett. 11 (2011) 2396-2399.

[15] J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, Two-dimensional phonon transport in supported graphene, Science 328 (2010) 213-216.

[16] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8 (2008) 902-907.

[17] F. Bonaccorso, Z. Sun, T. Hasan, A. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4 (2010) 611-622.

[18] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191.

[19] J. Lee, T.-J. Ha, K.N. Parrish, S.F. Chowdhury, L. Tao, A. Dodabalapur, D. Akinwande, High-performance current saturating graphene fieldeffect transistor with hexagonal boron nitride dielectric on flexible polymeric substrates, Electron Device Lett. IEEE 34 (2013) 172-174.

[20] I. Meric, C.R. Dean, N. Petrone,W. Lei, J. Hone, P. Kim, K.L. Shepard, Graphene field-effect transistors based on boron nitride dielectrics, Proc. IEEE 101 (2013) 1609-1619.

[21] Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides, Nat. Nano 7 (2012) 699-712.

[22] L. Li,Y.Yu, G.J.Ye,Q. Ge, X. Ou, H.Wu,D. Feng, X.H. Chen,Y. Zhang, Black phosphorus field-effect transistors, Nat. Nano 9 (2014) 372-377.

[23] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Silicene field-effect transistors operating at room temperature, Nat. Nano 10 (2015) 227-231.

[24] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Emerging photoluminescence in monolayer MoS2, Nano Lett. 10 (2010) 1271-1275.

[25] H. Liu, A.T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, P.D. Ye, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano 8 (2014) 4033-4041.

[26] P.W. Bridgman, Two new modifications of phosphorus, J. Am. Chem. Soc. 36 (1914) 1344-1363.

[27] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature 459 (2009) 820-823.

[28] F. Ceballos, M.Z. Bellus, H.-Y. Chiu, H. Zhao, Ultrafast charge separation and indirect exciton formation in a MoS2eMoSe2 van der Waals heterostructure, ACS Nano 8 (2014) 12717-12724.

[29] D. Boschetto, L. Malard, C.H. Lui, K.F. Mak, Z. Li, H. Yan, T.F. Heinz, Real-time observation of interlayer vibrations in bilayer and few-layer graphene, Nano Lett. 13 (2013) 4620-4623.

[30] X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang, Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures, Nat. Nano 9 (2014) 682-686.

[31] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nat. Nano 6 (2011) 147-150.

[32] W.S. Yun, S. Han, S.C. Hong, I.G. Kim, J. Lee, Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2HMX2 semiconductors (M=Mo, W; X=S, Se, Te), Phys. Rev. B 85 (2012) 033305.

[33] H. Cao, G. Aivazian, Z. Fei, J. Ross, D.H. Cobden, X. Xu, Photo-Nernst Current in Graphene, arXiv Preprint arXiv:1510.00765, 2015.

[34] S. El-Mahalawy, B. Evans, Temperature dependence of the electrical conductivity and hall coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2, Phys. Status Solidi (B) 79 (1977) 713-722.

[35] A. Berkdemir, H.R. Gutierrez, A.R. Botello-Mendez, N. Perea-Lopez, A.L. Elias, C.-I. Chia, B. Wang, V.H. Crespi, F. Lopez-Urias, J.-C. Charlier, H. Terrones, M. Terrones, Identification of individual and few layers of WS2 using Raman spectroscopy, Sci. Rep. 3 (2013).

[36] R. Ganatra, Q. Zhang, Few-layer MoS2: a promising layered semiconductor, ACS Nano 8 (2014) 4074-4099.

[37] M.S. Dresselhaus, Intercalation in layered materials, MRS Bull. 12 (1987) 24-28.

[38] B. Mahler, V. Hoepfner, K. Liao, G.A. Ozin, Colloidal synthesis of 1TWS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution, J. Am. Chem. Soc. 136 (2014) 14121-14127.

[39] F.S. Ohuchi, W. Jaegermann, C. Pettenkofer, B.A. Parkinson, Semiconductor to metal transition of WS2 induced by K intercalation in ultrahigh vacuum, Langmuir 5 (1989) 439-442.

[40] Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS Nano 2 (2008) 2301-2305.

[41] H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13 (2013) 3626-3630.

[42] G.S. Duesberg, Heterojunctions in 2D semiconductors: a perfect match, Nat. Mater. 13 (2014) 1075-1076.

[43] A.K. Geim, I.V. Grigorieva, Van derWaals heterostructures, Nature 499 (2013) 419-425.

[44] L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater. 9 (2010) 430-435.

[45] Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, Beng K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, P.M. Ajayan, Vertical and inplane heterostructures from WS2/MoS2 monolayers, Nat. Mater. 13(2014) 1135-1142.

[46] A.P. Nayak, S. Bhattacharyya, J. Zhu, J. Liu, X. Wu, T. Pandey, C. Jin, A.K. Singh, D. Akinwande, J.-F. Lin, Pressure-induced semiconducting to metallic transition in multilayered molybdenum disulphide, Nat. Commun. 5 (2014) 3731.

[47] D. Smith, R.T. Howie, I.F. Crowe, C.L. Simionescu, C. Muryn, V. Vishnyakov, K.S. Novoselov, Y.-J. Kim, M.P. Halsall, E. Gregoryanz, J.E. Proctor, Hydrogenation of graphene by reaction at high pressure and high temperature, ACS Nano 9 (2015) 8279-8283.

[48] A.P. Nayak, T. Pandey, D. Voiry, J. Liu, S.T. Moran, A. Sharma, C. Tan, C.-H. Chen, L.-J. Li, M. Chhowalla, Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide, Nano Lett. 15 (2014) 346-353.

[49] X. Dou, K. Ding, D. Jiang, B. Sun, Tuning and identification of interband transitions in monolayer and bilayer molybdenum disulfide using hydrostatic pressure, ACS Nano 8 (2014) 7458-7464.

[50] J. Nicolle, D. Machon, P. Poncharal, O. Pierre-Louis, A. San-Miguel, Pressure-mediated doping in graphene, Nano Lett. 11 (2011) 3564-3568.

[51] J.E. Proctor, E. Gregoryanz, K.S. Novoselov, M. Lotya, J.N. Coleman, M.P. Halsall, High-pressure Raman spectroscopy of graphene, Phys. Rev. B 80 (2009) 073408.

[52] A.P. Nayak, Z. Yuan, B. Cao, J. Liu, J. Wu, S.T. Moran, T. Li, D. Akinwande, C. Jin, J.-F. Lin, Pressure-modulated conductivity, carrier density, and mobility of multilayered tungsten disulfide, ACS Nano 9 (2015) 9117-9123.

[53] Z. Zhao, H. Zhang, H. Yuan, S. Wang, Y. Lin, Q. Zeng, G. Xu, Z. Liu, G.K. Solanki, K.D. Patel, Y. Cui, H.Y. Hwang, W.L. Mao, Pressure induced metallization with absence of structural transition in layered molybdenum diselenide, Nat. Commun. 6 (2015) 7312.

[54] I. Shirotani, J. Mikami, T. Adachi, Y. Katayama, K. Tsuji, H. Kawamura, O. Shimomura, T. Nakajima, Phase transitions and superconductivity of black phosphorus and phosphorus-arsenic alloys at low temperatures and high pressures, Phys. Rev. B 50 (1994) 16274-16278.

[55] W. Zhang, A.R. Oganov, A.F. Goncharov, Q. Zhu, S.E. Boulfelfel, A.O. Lyakhov, E. Stavrou, M. Somayazulu, V.B. Prakapenka, Z. Kon^opkova, Unexpected stable stoichiometries of sodium chlorides, Science 342 (2013) 1502-1505.

[56] D.L.V.K. Prasad, N.W. Ashcroft, R. Hoffmann, Evolving structural diversity and metallicity in compressed lithium azide, J. Phys. Chem. C 117 (2013) 20838-20846.

[57] J. Zhang, Z. Zeng, H.-Q. Lin, Y.-L. Li, Pressure-induced planar N6 rings in potassium azide, Sci. Rep. 4 (2014) 4358.

[58] S.B. Schneider, R. Frankovsky, W. Schnick, Synthesis of alkaline Earth diazenides MAEN2 (MAE=Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure, Inorg. Chem. 51 (2012) 2366-2373.

[59] S.B. Schneider, R. Frankovsky, W. Schnick, High-pressure synthesis and characterization of the alkali diazenide Li2N2, Angew. Chem. Int. Ed. 51 (2012) 1873-1875.

[60] Y.-L. Li, W. Luo, Z. Zeng, H.-Q. Lin, H.K. Mao, R. Ahuja, Pressureinduced superconductivity in CaC2, Proc. Natl. Acad. Sci. U.S.A. 110 (2013) 9289-9294.

[61] Y.-L. Li, S.-N. Wang, A.R. Oganov, H. Gou, J.S. Smith, T.A. Strobel, Investigation of exotic stable calcium carbides using theory and experiment, Nat. Commun. 6 (2015) 6974.

[62] O.O. Kurakevych, T.A. Strobel, D.Y. Kim, G.D. Cody, Synthesis of Mg2C: a magnesium methanide, Angew. Chem. Int. Ed. 52 (2013) 8930-8933.

[63] P. Srepusharawoot, A. Blomqvist, C.M. Araujo, R.H. Scheicher, R. Ahuja, One-dimensional polymeric carbon structure based on fivemembered rings in alkaline Earth metal dicarbides BeC2 and MgC2, Phys. Rev. B 82 (2010) 125439.

[64] I. Efthimiopoulos, K. Kunc, G.V. Vazhenin, E. Stavrou, K. Syassen, M. Hanfland, S. Liebig, U. Ruschewitz, Structural transformation and vibrational properties of BaC2 at high pressure, Phys. Rev. B 85 (2012) 134125.

[65] J. Nylen, S. Konar, P. Lazor, D. Benson, U. Haussermann, Structural behavior of the acetylide carbides Li2C2 and CaC2 at high pressure, J. Chem. Phys. 137 (2012) 224507.

[66] J. Catafesta, J. Haines, J.E. Zorzi, A.S. Pereira, C.A. Perottoni, Pressure-induced amorphization and decomposition of Fe[Co(CN)6], Phys. Rev. B 77 (2008) 064104.

[67] Y. Moritomo, M. Hanawa, Y. Ohishi, K. Kato, M. Takata, A. Kuriki, E. Nishibori, M. Sakata, S. Ohkoshi, H. Tokoro, K. Hashimoto, Pressure-and photoinduced transformation into a metastable phase in RbMn[Fe(CN)6], Phys. Rev. B 68 (2003) 144106.

[68] K. Li, H. Zheng, I.N. Ivanov, M. Guthrie, Y. Xiao, W. Yang, C.A. Tulk, Y. Zhao, H.K. Mao, K3Fe(CN)6: pressure-induced polymerization and enhanced conductivity, J. Phys. Chem. C 117 (2013) 24174-24180.

[69] L.F. Lundegaard, G. Weck, M.I. McMahon, S. Desgreniers, P. Loubeyre, Observation of an O8 molecular lattice in the ε phase of solid oxygen, Nature 443 (2006) 201-204.

[70] Y. Meng, P.J. Eng, J.S. Tse, D.M. Shaw, M.Y. Hu, J. Shu, S.A. Gramsch, C. Kao, R.J. Hemley, H.K. Mao, Inelastic X-ray scattering of dense solid oxygen: evidence for intermolecular bonding, Proc. Nat. Acad. Sci. USA 105 (2008) 11640-11644.

[71] M.I. Eremets, A.G. Gavriliuk, I.A. Trojan, D.A. Dzivenko, R. Boehler, Single-bonded cubic form of nitrogen, Nat. Mater. 3 (2004) 558-563.

[72] W.J. Evans, M.J. Lipp, C.-S. Yoo, H. Cynn, J.L. Herberg, R.S. Maxwell, M.F. Nicol, Pressure-induced polymerization of carbon monoxide: disproportionation and synthesis of an energetic lactonic polymer, Chem. Mater. 18 (2006) 2520-2531.

[73] A.L. Katz, D. Schiferl, R.L. Mills, New phases and chemical reactions in solid CO under pressure, J. Phys. Chem. 88 (1984) 3176-3179.

[74] F. Datchi, B. Mallick, A. Salamat, S. Ninet, Structure of polymeric carbon dioxide CO2-V, Phys. Rev. Lett. 108 (2012) 125701.

[75] M. Santoro, F.A. Gorelli, R. Bini, J. Haines, O. Cambon, C. Levelut, J.A. Montoya, S. Scandolo, Partially collapsed cristobalite structure in the non molecular phase V in CO2, Proc. Natl. Acad. Sci. U.S.A. 109 (2012) 5176-5179.

[76] V. Iota, C.-s. Yoo, J.-H. Klepeis, Z. Jenei, W. Evans, H. Cynn, Six-fold coordinated carbon dioxide VI, Nat. Mater. 6 (2007) 34-38.

[77] P. Pruzan, J.C. Chervin, M.M. Thiery, J.P. Itie, J.M. Besson, J.P. Forgerit, M. Revault, Transformation of benzene to a polymer after static pressurization to 30 GPa, J. Chem. Phys. 92 (1990) 6910-6915.

[78] B.R. Jackson, C.C. Trout, J.V. Badding, UV Raman analysis of the C: H network formed by compression of benzene, Chem. Mater. 15 (2003) 1820-1824.

[79] T.C. Fitzgibbons, M. Guthrie, E.-s. Xu, V.H. Crespi, S.K. Davidowski, G.D. Cody, N. Alem, J.V. Badding, Benzene-derived carbon nanothreads, Nat. Mater. 14 (2015) 43-47.

[80] M. Citroni, R. Bini, P. Foggi, V. Schettino, Role of excited electronic states in the high-pressure amorphization of benzene, Proc. Natl. Acad. Sci. USA 105 (2008).

[81] L. Ciabini, M. Santoro, F.A. Gorelli, R. Bini, V. Schettino, S. Raugei, Triggering dynamics of the high-pressure benzene amorphization, Nat. Mater. 6 (2007) 39-43.

[82] K. Aoki, S. Usuba, M. Yoshida, Y. Kakudate, K. Tanaka, S. Fujiwara, Raman-study of the solid-state polymerization of acetylene at highpressure, J. Chem. Phys. 89 (1988) 529-534.

[83] C.C. Trout, J.V. Badding, Solid state polymerization of acetylene at high pressure and low temperature, J. Phys. Chem. A 104 (2000) 8142-8145.

[84] M. Ceppatelli, M. Santoro, R. Bini, V. Schettino, Fourier transform infrared study of the pressure and laser induced polymerization of solid acetylene, J. Chem. Phys. 113 (2000) 5991-6000.

[85] M. Sakashita, H. Yamawaki, K. Aoki, FT-IR study of the solid state polymerization of acetylene under pressure, J. Phys. Chem. 100 (1996) 9943-9947.

[86] K. Aoki, Y. Kakudate, M. Yoshida, S. Usuba, S. Fujiwara, Solid-state polymerization of cyanoacetylene into conjugated linear-chains under pressure, J. Chem. Phys. 91 (1989) 778-782.

[87] M. Santoro, L. Ciabini, R. Bini, V. Schettino, High-pressure polymerization of phenylacetylene and of the benzene and acetylene moieties, J. Raman Spectrosc. 34 (2003) 557-566.

[88] K. Aoki, B.J. Baer, H.C. Cynn, M. Nicol, High-pressure Raman-study of one-dimensional crystals of the very polar molecule hydrogen-cyanide, Phys. Rev. B 42 (1990) 4298-4303.

[89] V. Schettino, R. Bini, Molecules under extreme conditions: chemical reactions at high pressure, Phys. Chem. Chem. Phys. 5 (2003) 1951-1965.

[90] M. Citroni, M. Ceppatelli, R. Bini, V. Schettino, Laser-induced selectivity for dimerization versus polymerization of butadiene under pressure, Science 295 (2002) 2058-2060.

[91] M.S. Paterson, Rock deformation experimentation. The Brittle-Ductile Transition in Rocks, American Geophysical Union, 1990, pp. 187-194.

[92] T.N. Tingle, H.W. Green II, T.E. Young, T.A. Koczynski, Improvements to Griggs-type apparatus for mechanical testing at high pressures and temperatures, Pure Appl. Geophys. 141 (1993) 523-543.

[93] J.H. Chen, L. Li, D. Weidner, M. Vaughan, Deformation experiments using synchrotron X-rays: in situ stress and strain measurements at high pressure and temperature, Phys. Earth Planet. Inter. 143e44 (2004) 347-356.

[94] Y.B. Wang, W.B. Durham, I.C. Getting, D.J. Weidner, The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa, Rev. Sci. Instrum. 74 (2003) 3002-3011.

[95] S.A. Hunt, D.J. Weidner, R.J. McCormack, M.L. Whitaker, E. Bailey, L. Li, M.T. Vaughan, D.P. Dobson, Deformation T-Cup: a new multianvil apparatus for controlled strain-rate deformation experiments at pressures above 18 GPa, Rev. Sci. Instrum. 85 (2014) 085103.

[96] T. Kawazoe, T. Ohuchi, N. Nishiyama, Y. Nishihara, T. Irifune, Preliminary deformation experiment of ringwoodite at 20 GPa and 1 700 K using a D-DIA apparatus, J. Earth Sci. 21 (2010) 517-522.

[97] Y. Nishihara, D. Tinker, T. Kawazoe, Y. Xu, Z. Jing, K.N. Matsukage, S.-i. Karato, Plastic deformation of wadsleyite and olivine at highpressure and high-temperature using a rotational Drickamer apparatus (RDA), Phys. Earth Planet. Inter. 170 (2008) 156-169.

[98] J.-P. Poirier, Creep of Crystals: High-temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press, Cambridge, 1985, p. 276.

[99] P.N. Chopra, M.S. Paterson, The experimental deformation of dunite, Tectonophys 78 (1981) 453-473.

[100] S. Mei, D.L. Kohlstedt, Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime, J. Geophys. Res. 105 (2000) 21471-21481.

[101] G. Hirth, D. Kohlstedt, Rheology of the upper mantle and the mantle wedge: a view from the experimentalists, in: J. Eiler (Ed.), Inside the Subduction Factory, American Geophysical Union, 2003, pp. 83-105.

[102] S.-I. Karato, H. Jung, Effects of pressure on high-temperature dislocation creep in olivine, Philos. Mag. 83 (2003) 401-414.

[103] T. Kawazoe, S.-i. Karato, K. Otsuka, Z. Jing, M. Mookherjee, Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA), Phys. Earth Planet. Inter. 174 (2009) 128-137.

[104] W.B. Durham, S. Mei, D.L. Kohlstedt, L. Wang, N.A. Dixon, New measurements of activation volume in olivine under anhydrous conditions, Phys. Earth Planet. Inter. 172 (2009) 67-73.

[105] L. Li, D. Weidner, P. Raterron, J. Chen, M. Vaughan, S. Mei, B. Durham, Deformation of olivine at mantle pressure using the DDIA, Eur. J. Mineral. 18 (2006) 7-19.

[106] P. Raterron, J. Chen, L. Li, D. Weidner, P. Cordier, Pressure-induced slip-system transition in forsterite: single-crystal rheological properties at mantle pressure and temperature, Am. Mineral. 92 (2007) 1436-1445.

[107] N. Hilairet, Y. Wang, T. Sanehira, S. Merkel, S. Mei, Deformation of olivine under mantle conditions: an in situ high-pressure, high-temperature study using monochromatic synchrotron radiation, J. Geophys. Res. 117 (2012) B01203.

[108] S.-i. Karato, Rheology of the deep upper mantle and its implications for the preservation of the continental roots: a review, Tectonophys 481 (2010) 82-98.

[109] J.V. Ross, G.A.L. Hans, N.L. Carter, Activation volume for creep in the upper mantle, Science 203 (1979) 261-263.

[110] H.W. Green II, R.S. Borch, The pressure dependence of creep, Acta Metall. 35 (1987) 1301-1305.

[111] F. Bejina, P. Raterron, J. Zhang, O. Jaoul, R.C. Liebermann, Activation volume of silicon diffusion in San Carlos olivine, Geophys. Res. Lett. 24 (1997) 2597-2600.

[112] P. Raterron, E. Amiguet, J. Chen, L. Li, P. Cordier, Experimental deformation of olivine single crystals at mantle pressures and temperatures, Phys. Earth Planet. Inter. 172 (2009) 74-83.

[113] S.-I. Karato, D.C. Rubie, H. Yan, Dislocation recovery in olivine under deep upper mantle conditions: Implications for creep and diffusion, J. Geophys. Res. 98 (1993) 9761-9768.

[114] D.L. Kohlstedt, H.P.K. Nichols, P. Hornack, The effect of pressure on the rate of dislocation recovery in olivine, J. Geophys. Res. 85 (1980) 3122-3130.

[115] S.-I. Karato, Comment on ‘The effect of pressure on the rate of dislocation recovery in olivine’ by D. L. Kohlstedt, H. P. K. Nichols, and Paul Hornack, J. Geophys. Res. 86 (1981) 9319.

[116] S. Karato, M. Ogawa, High-pressure recovery of olivine: implications for creep mechanisms and creep activation volume, Phys. Earth Planet. Inter. 28 (1982) 102-117.

[117] S.-i. Karato, D.C. Rubie, Toward an experimental study of deep mantle rheology: a new multianvil sample assembly for deformation studies under high pressures and temperatures, J. Geophys. Res. 102 (1997) 20111-20122.

[118] K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang, Deformation of electrodeposited nanocrystalline nickel, Acta Mater. 51 (2003) 387-405.

[119] Z.W. Shan, J.M.K. Wiezorek, E.A. Stach, D.M. Follstaedt, J.A. Knapp, S.X. Mao, Dislocation dynamics in nanocrystalline nickel, Phys. Rev. Lett. 98 (2007) 095502.

[120] M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, X. Cheng, Deformation twinning in nanocrystalline aluminum, Science 300 (2003) 1275-1277.

[121] X. Li, Y. Wei, L. Lu, K. Lu, H. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature 464 (2010) 877-880.

[122] L. Lu, X. Chen, X. Huang, K. Lu, Revealing the maximum strength in nanotwinned copper, Science 323 (2009) 607-610.

[123] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation, Nat. Mater. 1 (2002) 45-48.

[124] R.L. Penn, J.F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals, Science 281 (1998) 969-971.

[125] J. Schitz, K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301 (2003) 1357-1359.

[126] J. Schitz, F.D.D. Tolla, K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature 391 (1998) 561-563.

[127] B. Chen, K. Lutker, S.V. Raju, J. Yan, W. Kanitpanyacharoen, J. Lei, S. Yang, H.-R. Wenk, H.K. Mao, Q. Williams, Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity, Science 338 (2012) 1448-1451.

[128] Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, S.X. Mao, Grain boundaryemediated plasticity in nanocrystalline nickel, Science 305 (2004) 654-657.

[129] W.J. Clegg, Controlling cracks in ceramics, Science 286 (1999) 1097-1099.

[130] J. Karch, R. Birringer, H. Gleiter, Ceramics ductile at low temperature, Nature 330 (1987) 556-558.

[131] S-i Karato, Deformation of Earth Materials: an Introduction to the Rheology of Solid Earth, Cambridge University Press, Cambridge, 2008.

[132] S. Tateno, K. Hirose, Y. Ohishi, Y. Tatsumi, The structure of iron in Earth's inner core, Science 330 (2010) 359-361.

[133] J. Bhattacharyya, P. Shearer, G. Masters, Inner core attenuation from short-period PKP(BC) versus PKP(DF) waveforms, Geophys. J. Intl. 114 (1993) 1-11.

[134] X. Song, Anisotropy of the Earth's inner core, Rev. Geophys. 35 (1997) 297-313.

[135] J. Tromp, Inner-core anisoropy and rotation, Annu. Rev. Earth Planet. Sci. 29 (2001) 47-69.

[136] L. Wen, F. Niu, Seismic velocity and attenuation structures in the top of the Earth's inner-core, J. Geophys. Res. 107 (2002), http://dx.doi.org/10.1029/2001JB000170.

[137] S. Merkel, H.-R. Wenk, P. Gillet, H.K. Mao, R.J. Hemley, Deformation of polycrystalline iron up to 30 GPa and 1000 K, Phys. Earth Planet. Inter. 145 (2004) 239-251.

[138] L. Miyagi, M. Kunz, J. Knight, J. Nasiatka, M. Voltolini, H.-R. Wenk, In situ phase transformation and deformation of iron at high pressure and temperature, J. Appl. Phys. 104 (2008) 103510.

[139] L. Miyagi, W. Kanitpanyacharoen, P. Kaercher, K.K.M. Lee, H.-R. Wenk, Slip systems in MgSiO3 post-perovskite: implications for D00 anisotropy, Science 329 (2010) 1639-1641.

[140] S. Merkel, A. Kubo, L. Miyagi, S. Speziale, T.S. Duffy, H.K. Mao, H.-R. Wenk, Plastic deformation of MgGeO3 post-perovskite at lower mantle pressures, Science 311 (2006) 644-646.

[141] J. Trampert, HJv Heijst, Global azimuthal anisotropy in the transition zone, Science 296 (2002) 1297-1299.

[142] S.-i. Karato, A dislocation model of seismic wave attenuation and micro-creep in the Earth: Harold Jeffreys and the rheology of the solid Earth, Pure Appl. Geophys. 153 (1998) 239-256.

[143] J. Chen, T. Inoue, D.J. Weidner, Y. Wu, M.T. Vaughan, Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite, Geophys. Res. Lett. 25 (1998) 575-578.

[144] T. Kubo, E. Ohtani, T. Kato, T. Shinmei, K. Fujino, Effects of water on the a-b transformation kinetics in San Carlos olivine, Science 281 (1998) 85-87.

[145] R. Jeanloz, P.M. Celliers, G.W. Collins, J.H. Eggert, K.K.M. Lee, R.S. McWilliams, S. Brygoo, P. Loubeyre, Achieving high-density states through shock-wave loading of precompressed samples, Proc. Natl. Acad. Sci. USA 104 (2007) 9172-9177.

[146] M. Millot, N. Dubrovinskaia, A. Cernok, S. Blaha, L. Dubrovinsky, D.G. Braun, P.M. Celliers, G.W. Collins, J.H. Eggert, R. Jeanloz, Shock compression of stishovite and melting of silica at planetary interior conditions, Science 347 (2015) 418-420.

[147] R.F. Smith, J.H. Eggert, R. Jeanloz, T.S. Duffy, D.G. Braun, J.R. Patterson, R.E. Rudd, J. Biener, A.E. Lazicki, A.V. Hamza, J.Wang, T. Braun, L.X. Benedict, P.M. Celliers, G.W. Collins, Ramp compression of diamond to five terapascals, Nature 511 (2014) 330-333.

[148] K.K.M. Lee, L.R. Benedetti, R. Jeanloz, P.M. Celliers, J.H. Eggert, D.G. Hicks, S.J. Moon, A. Mackinnon, G.W. Collins, E. Henry, M. Koenig, A. Benuzzi-Mounaix, Laser-driven shock experiments on precompressed water: implications for “icy” giant planets, J. Chem. Phys. 125 (2006) 14701.

[149] J.H. Eggert, S. Brygoo, P. Loubeyre, R.S. McWilliams, P.M. Celliers, D.G. Hicks, T.R. Boehly, R. Jeanloz, G.W. Collins, Hugoniot data for helium in the ionization regime, Phys. Rev. Lett. 100 (2008) 124503.

[150] P.M. Celliers, P. Loubeyre, J.H. Eggert, S. Brygoo, R.S. McWilliams, D.G. Hicks, T.R. Boehly, R. Jeanloz, G.W. Collins, Insulator-to-conducting transition in dense fluid helium, Phys. Rev. Lett. 104 (2010) 184503.

[151] P. Loubeyre, S. Brygoo, J. Eggert, P.M. Celliers, D.K. Spaulding, J.R. Rygg, T.R. Boehly, G.W. Collins, R. Jeanloz, Extended data set for the equation of state of warm dense hydrogen isotopes, Phys. Rev. B 86 (2012) 144115.

[152] M.D. Knudson, M.P. Desjarlais, A. Becker, R.W. Lemke, K.R. Cochrane, M.E. Savage, D.E. Bliss, T.R. Mattsson, R. Redmer, Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium, Science 348 (2015) 1455-1460.

[153] A.P. Drozdov, M.I. Eremets, I.A. Troyan, V. Ksenofontov, S.I. Shylin, Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system, Nature 525 (2015) 73-76.

[154] Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen, J. He, Z. Liu, Y. Tian, Nanotwinned diamond with unprecedented hardness and stability, Nature 510 (2014) 250-253.

[155] T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya, Ultrahard polycrystalline diamond from graphite, Nature 421 (2003) 599-600.

Ho-Kwang Mao, Bin Chen, Jiuhua Chen, Kuo Li, Jung-Fu Lin, Wenge Yang, Haiyan Zheng. Recent advances in high-pressure science and technology[J]. Matter and Radiation at Extremes, 2016, 1(1): 59.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!