红外与激光工程, 2019, 48 (5): 0521003, 网络出版: 2019-06-22   

生物消光材料大气悬浮沉降特性

Atmospheric suspension settling characteristics of biological extinction material
作者单位
1 脉冲功率激光技术国家重点实验室(国防科技大学), 安徽 合肥 230037
2 电子制约技术安徽省重点实验室, 安徽 合肥 230037
摘要
生物材料具有生产成本低、粒径分布广、环保无污染等优点, 可作为一种新型消光材料。为了更好地研究生物材料的大气悬浮沉降特性, 针对制备的球状生物材料FANS 233D, 根据斯托克斯沉降规律及粒子数加权平均方法计算其沉降速度。利用团簇-团簇凝聚模型模拟了该生物凝聚粒子的空间结构, 结合牛顿第二定律研究了不同空间结构凝聚粒子的沉降速度, 并通过凝聚粒子的孔隙率、分形维数对其结构特征加以分析。结果表明: 包含不同原始微粒数的凝聚粒子, 其平均沉降速度随原始微粒数的增大而增大; 包含相同原始微粒数的凝聚粒子, 其沉降速度同该凝聚粒子的孔隙率与分形维数有关。针对生物消光材料大气悬浮沉降特性的研究将为其实际应用提供理论基础。
Abstract
The biological material has the characteristics of low production cost, wide particle size distribution and no pollution, it can be used as a new type of extinction material. In order to study the atmospheric suspension settling characteristics of biological extinction material FANS 233D, the settling velocity according to the Stokes law and the weighted average algorithm of particle number was calculated. A cluster-cluster aggregation model was used to simulate the fractal structure of the biological aggregated particles while Newton′s second law was used to calculate the settling velocity of aggregated particles with different fractal structures. The results indicate that the average settling velocity of the aggregated particles with different original particles increases with the increase of the number of original particles, the settling velocity of aggregated particles with the same number of original particles is related to the porosity and fractal dimension. The study on the atmospheric suspension characteristics of biological extinction material provides a theoretical basis for its practical application.
参考文献

[1] Velazco-Roa M A, Zhongova E D, Thennadil S N. Complex refractive index of nonspherical particles in the visible near infrared region—application to Bacillus subtilis spores[J]. Appl Opt, 2008. 47(33): 6183-6189.

[2] Wang Peng, Liu Hongxia, Zhao Yizheng, et al. Electromagnetic attenuation characteristics of microbial materials in the infrared band[J]. Applied Spectroscopy, 2016, 70(9): 1456-1463.

[3] Tuminello P S, Arakawa E T, Khare B N, et al. Optical properties of Bacillus subtilis spores from 0.2-2.5 μm[J]. Appl Opt, 1957, 36(3): 2818-2824.

[4] Ross K F A, Eve Billing. The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurement[J]. J Gen Microbiol, 1997, 16: 418-525.

[5] 刘建斌, 曾应新, 杨初平. 基于离散偶极子近似生物细胞光散射研究[J]. 红外与激光工程, 2014, 43(7): 2204-2208.

    Liu Jianbin, Zeng Yingxin, Yang Chuping. Light scattering study of biological cells with the discrete dipole approximation[J]. Infrared and Laser Engineering, 2014, 43(7): 2204-2208. (in Chinese)

[6] 冯春霞, 黄立华, 周光超, 等. 单分散生物气溶胶光散射特性的计算与分析[J]. 中国激光, 2010, 37(10): 2592-2598.

    Feng Chunxia, Huang Lihua, Zhou Guangchao, et al. Computation and analysis of light scattering by monodisperse biological aerosols[J]. Chinese J Lasers, 2010, 37(10): 2592-2598. (in Chinese)

[7] 赵欣颖, 胡以华, 顾有林, 等. 微生物凝聚粒子群的激光透射率研究[J]. 光学学报, 2015, 35(6): 0616001.

    Zhao Xinying, Hu Yihua, Gu Youlin, et al. Transmittance of laser in the microorganism aggregated particle swarm[J]. Acta Optica Sinica, 2015, 35(6): 0616001. (in Chinese)

[8] Gu Youlin, Hu Yihua, Zhao Xinying, et al. Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3-5 ?滋m[J]. Optics Express, 2018, 26(12): 15842-15850.

[9] 顾有林, 曹光华, 胡以华, 等. 生物材料紫外红外复合消光性能[J]. 红外与激光工程, 2018, 47(3): 0321003.

    Gu Youlin, Cao Guanghua, Hu Yihua, et al. Measurement of ultraviolet and Infrared composite extinction performance of biological materials [J]. Infrared and Laser Engineering, 2018, 47(3): 0321003. (in Chinese)

[10] Gurton K P, Ligon D A, Kvavilashvili R. Measured infrared spectral extinction for aerosolized Bacillus subtilis var. Niger endospores from 3 to 13 μm[J]. Appl Opt, 2001, 40(25): 4444.

[11] Chicea D, Turcu I. An alternative random walk Monte Carlo code to simulate light scattering in bioligical suspensions[J]. Optik, 2007, 118: 232-236.

[12] 李乐, 胡以华, 顾有林, 等. 黑曲霉孢子红外波段消光性能研究[J]. 红外与激光工程, 2014, 43(7): 2175-2179.

    Li Le, Hu Yihua, Gu Youlin, et al. Infrared extinction performance of Aspergillus niger spores[J]. Infrared and Laser Engineering, 2014, 43(7): 2175-2179. (in Chinese)

[13] 孙杜娟, 胡以华, 李乐. 气溶胶“沉降—扩散”联合动态数值模拟[J]. 红外与激光工程, 2014, 43(2): 449-453.

    Sun Dujuan, Hu Yihua, Li Le. Numerical simulation of aerosol sedimentation and diffusion[J]. Infrared and Laser Engineering, 2014, 43(2): 449-453. (in Chinese)

[14] 李乐, 胡以华, 顾有林, 等. 生物消光材料的扩散特性[J].红外与激光工程, 2017, 46(6): 0621001.

    Li Le, Hu Yihua, Gu Youlin, et al. Diffision characteristics of biological extinction material.[J]. Infrared and Laser Engineering, 2017, 46(6): 0621001. (in Chinese)

[15] 肖凯涛, 龚有国, 姚禄玖. 多分散气溶胶沉降速度测定及计算方法[J]. 过程工程学报, 2002, 2(S): 47-51.

    Xiao Kaitao, Gong Youguo, Yao Lujiu. Method for measurement and calculation of multi-disperse aerosol deposition velocity[J]. The Chinese Journal of Process Engineering, 2002, 2(S): 47-51. (in Chinese)

[16] Chao Li, Xiong H. 3D simulation of the cluster-cluster aggregation model[J]. Computer Phisics Communications, 2014, 185(12): 3424-3429.

[17] 姚禄玖, 高钧麟, 肖凯涛, 等. 烟幕理论与测试技术[M]. 北京: 国防工业出版社, 2004.

    Yao Lujiu, Gao Junlin, Xiao Kaitao, et al. Theory and Testing Technique of Smoke[M]. Beijing: National Defense Industry Publishing Company, 2004. (in Chinese)

[18] Lattuada M, Wu H, Morbidelli M. Radial density distribution of fractal clusters[J]. Chemical Engineering Science, 2004, 59(21): 4401-4413.

[19] Kozasa T, Blum J, Mukai T. Optical properties of dust aggregates[J]. Astronomy and Astrophysics, 1992, 263(1-2): 423-432.

[20] Steinvall K O, Kopparl K K, Karlsson V C M[J]. Opt Eng, 1993, 32(6): 1307-1321.

, , , , , . 生物消光材料大气悬浮沉降特性[J]. 红外与激光工程, 2019, 48(5): 0521003. Chen Xi, Hu Yihua, Gu Youlin, Zhao Xinying, Huang Baokun, Yang Biao. Atmospheric suspension settling characteristics of biological extinction material[J]. Infrared and Laser Engineering, 2019, 48(5): 0521003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!